CVE Vulnerabilities

CVE-2020-1968

Observable Discrepancy

Published: Sep 09, 2020 | Modified: Nov 21, 2022
CVSS 3.x
3.7
LOW
Source:
NVD
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:P/I:N/A:N
RedHat/V2
RedHat/V3
5.9 LOW
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N
Ubuntu
LOW

The Raccoon attack exploits a flaw in the TLS specification which can lead to an attacker being able to compute the pre-master secret in connections which have used a Diffie-Hellman (DH) based ciphersuite. In such a case this would result in the attacker being able to eavesdrop on all encrypted communications sent over that TLS connection. The attack can only be exploited if an implementation re-uses a DH secret across multiple TLS connections. Note that this issue only impacts DH ciphersuites and not ECDH ciphersuites. This issue affects OpenSSL 1.0.2 which is out of support and no longer receiving public updates. OpenSSL 1.1.1 is not vulnerable to this issue. Fixed in OpenSSL 1.0.2w (Affected 1.0.2-1.0.2v).

Weakness

The product behaves differently or sends different responses under different circumstances in a way that is observable to an unauthorized actor, which exposes security-relevant information about the state of the product, such as whether a particular operation was successful or not.

Affected Software

Name Vendor Start Version End Version
Openssl Openssl 1.0.2 (including) 1.0.2v (including)
Edk2 Ubuntu esm-apps/xenial *
Edk2 Ubuntu trusty *
Edk2 Ubuntu xenial *
Nodejs Ubuntu trusty *
Openssl Ubuntu fips-updates/xenial *
Openssl Ubuntu fips/xenial *
Openssl Ubuntu precise/esm *
Openssl Ubuntu trusty *
Openssl Ubuntu trusty/esm *
Openssl Ubuntu upstream *
Openssl Ubuntu xenial *
Openssl1.0 Ubuntu bionic *

Potential Mitigations

  • Compartmentalize the system to have “safe” areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
  • Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
  • Ensure that error messages only contain minimal details that are useful to the intended audience and no one else. The messages need to strike the balance between being too cryptic (which can confuse users) or being too detailed (which may reveal more than intended). The messages should not reveal the methods that were used to determine the error. Attackers can use detailed information to refine or optimize their original attack, thereby increasing their chances of success.
  • If errors must be captured in some detail, record them in log messages, but consider what could occur if the log messages can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log files.
  • Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a user account exists or not.

References