CVE Vulnerabilities

CVE-2020-25646

Improper Encoding or Escaping of Output

Published: Oct 29, 2020 | Modified: Nov 07, 2023
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:P/I:N/A:N
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

A flaw was found in Ansible Collection community.crypto. openssl_privatekey_info exposes private key in logs. This directly impacts confidentiality

Weakness

The product prepares a structured message for communication with another component, but encoding or escaping of the data is either missing or done incorrectly. As a result, the intended structure of the message is not preserved.

Affected Software

Name Vendor Start Version End Version
Community.crypto Ansible_collections_project - (including) - (including)
Ansible Ubuntu bionic *
Ansible Ubuntu groovy *
Ansible Ubuntu hirsute *
Ansible Ubuntu impish *
Ansible Ubuntu kinetic *
Ansible Ubuntu lunar *
Ansible Ubuntu mantic *
Ansible Ubuntu trusty *
Ansible Ubuntu trusty/esm *
Ansible Ubuntu xenial *

Extended Description

Improper encoding or escaping can allow attackers to change the commands that are sent to another component, inserting malicious commands instead. Most products follow a certain protocol that uses structured messages for communication between components, such as queries or commands. These structured messages can contain raw data interspersed with metadata or control information. For example, “GET /index.html HTTP/1.1” is a structured message containing a command (“GET”) with a single argument ("/index.html") and metadata about which protocol version is being used (“HTTP/1.1”). If an application uses attacker-supplied inputs to construct a structured message without properly encoding or escaping, then the attacker could insert special characters that will cause the data to be interpreted as control information or metadata. Consequently, the component that receives the output will perform the wrong operations, or otherwise interpret the data incorrectly.

Potential Mitigations

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, consider using the ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the programmer encode outputs in a manner less prone to error.
  • Alternately, use built-in functions, but consider using wrappers in case those functions are discovered to have a vulnerability.
  • If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this capability at every point where output is generated.
  • For example, stored procedures can enforce database query structure and reduce the likelihood of SQL injection.

References