CVE Vulnerabilities

CVE-2020-25712

Heap-based Buffer Overflow

Published: Dec 15, 2020 | Modified: Dec 16, 2020
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
4.6 MEDIUM
AV:L/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
7.8 IMPORTANT
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

A flaw was found in xorg-x11-server before 1.20.10. A heap-buffer overflow in XkbSetDeviceInfo may lead to a privilege escalation vulnerability. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

Name Vendor Start Version End Version
X_server X.org * 1.20.10 (excluding)
Red Hat Enterprise Linux 7 RedHat xorg-x11-server-0:1.20.4-15.el7_9 *
Red Hat Enterprise Linux 8 RedHat egl-wayland-0:1.1.5-3.el8 *
Red Hat Enterprise Linux 8 RedHat libdrm-0:2.4.103-1.el8 *
Red Hat Enterprise Linux 8 RedHat libglvnd-1:1.3.2-1.el8 *
Red Hat Enterprise Linux 8 RedHat libinput-0:1.16.3-1.el8 *
Red Hat Enterprise Linux 8 RedHat libwacom-0:1.6-2.el8 *
Red Hat Enterprise Linux 8 RedHat libX11-0:1.6.8-4.el8 *
Red Hat Enterprise Linux 8 RedHat mesa-0:20.3.3-2.el8 *
Red Hat Enterprise Linux 8 RedHat xorg-x11-drivers-0:7.7-30.el8 *
Red Hat Enterprise Linux 8 RedHat xorg-x11-server-0:1.20.10-1.el8 *
Xorg Ubuntu trusty *
Xorg-server Ubuntu bionic *
Xorg-server Ubuntu devel *
Xorg-server Ubuntu focal *
Xorg-server Ubuntu groovy *
Xorg-server Ubuntu trusty *
Xorg-server Ubuntu trusty/esm *
Xorg-server Ubuntu xenial *
Xorg-server-hwe-16.04 Ubuntu xenial *
Xorg-server-hwe-18.04 Ubuntu bionic *
Xorg-server-lts-utopic Ubuntu trusty *
Xorg-server-lts-vivid Ubuntu trusty *
Xorg-server-lts-wily Ubuntu trusty *
Xorg-server-lts-xenial Ubuntu trusty *

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References