CVE Vulnerabilities

CVE-2020-25712

Heap-based Buffer Overflow

Published: Dec 15, 2020 | Modified: Nov 21, 2024
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
4.6 MEDIUM
AV:L/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
7.8 IMPORTANT
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM
root.io logo minimus.io logo echo.ai logo

A flaw was found in xorg-x11-server before 1.20.10. A heap-buffer overflow in XkbSetDeviceInfo may lead to a privilege escalation vulnerability. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

NameVendorStart VersionEnd Version
X_serverX.org*1.20.10 (excluding)
Red Hat Enterprise Linux 7RedHatxorg-x11-server-0:1.20.4-15.el7_9*
Red Hat Enterprise Linux 8RedHategl-wayland-0:1.1.5-3.el8*
Red Hat Enterprise Linux 8RedHatlibdrm-0:2.4.103-1.el8*
Red Hat Enterprise Linux 8RedHatlibglvnd-1:1.3.2-1.el8*
Red Hat Enterprise Linux 8RedHatlibinput-0:1.16.3-1.el8*
Red Hat Enterprise Linux 8RedHatlibwacom-0:1.6-2.el8*
Red Hat Enterprise Linux 8RedHatlibX11-0:1.6.8-4.el8*
Red Hat Enterprise Linux 8RedHatmesa-0:20.3.3-2.el8*
Red Hat Enterprise Linux 8RedHatxorg-x11-drivers-0:7.7-30.el8*
Red Hat Enterprise Linux 8RedHatxorg-x11-server-0:1.20.10-1.el8*
XorgUbuntutrusty*
Xorg-serverUbuntubionic*
Xorg-serverUbuntudevel*
Xorg-serverUbuntuesm-infra-legacy/trusty*
Xorg-serverUbuntuesm-infra/bionic*
Xorg-serverUbuntuesm-infra/focal*
Xorg-serverUbuntuesm-infra/xenial*
Xorg-serverUbuntufocal*
Xorg-serverUbuntugroovy*
Xorg-serverUbuntutrusty*
Xorg-serverUbuntutrusty/esm*
Xorg-serverUbuntuxenial*
Xorg-server-hwe-16.04Ubuntuesm-infra/xenial*
Xorg-server-hwe-16.04Ubuntuxenial*
Xorg-server-hwe-18.04Ubuntubionic*
Xorg-server-hwe-18.04Ubuntuesm-infra/bionic*
Xorg-server-lts-utopicUbuntutrusty*
Xorg-server-lts-vividUbuntutrusty*
Xorg-server-lts-wilyUbuntutrusty*
Xorg-server-lts-xenialUbuntutrusty*

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References