CVE Vulnerabilities

CVE-2020-27752

Heap-based Buffer Overflow

Published: Dec 08, 2020 | Modified: Nov 07, 2023
CVSS 3.x
7.1
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:H
CVSS 2.x
5.8 MEDIUM
AV:N/AC:M/Au:N/C:N/I:P/A:P
RedHat/V2
RedHat/V3
7.1 MODERATE
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:H
Ubuntu
MEDIUM

A flaw was found in ImageMagick in MagickCore/quantum-private.h. An attacker who submits a crafted file that is processed by ImageMagick could trigger a heap buffer overflow. This would most likely lead to an impact to application availability, but could potentially lead to an impact to data integrity as well. This flaw affects ImageMagick versions prior to 7.0.9-0.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

Name Vendor Start Version End Version
Imagemagick Imagemagick * 6.9.11-47 (excluding)
Imagemagick Imagemagick 7.0.0-0 (including) 7.0.9-0 (excluding)
Imagemagick Ubuntu bionic *
Imagemagick Ubuntu groovy *
Imagemagick Ubuntu trusty *
Imagemagick Ubuntu upstream *
Imagemagick Ubuntu xenial *

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References