CVE Vulnerabilities

CVE-2020-29362

Out-of-bounds Read

Published: Dec 16, 2020 | Modified: Jan 11, 2021
CVSS 3.x
5.3
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:P/I:N/A:N
RedHat/V2
RedHat/V3
5.3 MODERATE
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
Ubuntu
MEDIUM

An issue was discovered in p11-kit 0.21.1 through 0.23.21. A heap-based buffer over-read has been discovered in the RPC protocol used by thep11-kit server/remote commands and the client library. When the remote entity supplies a byte array through a serialized PKCS#11 function call, the receiving entity may allow the reading of up to 4 bytes of memory past the heap allocation.

Weakness

The product reads data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
P11-kit P11-kit_project 0.23.6 (including) 0.23.22 (excluding)
Red Hat Enterprise Linux 8 RedHat p11-kit-0:0.23.22-1.el8 *
P11-kit Ubuntu bionic *
P11-kit Ubuntu devel *
P11-kit Ubuntu focal *
P11-kit Ubuntu groovy *
P11-kit Ubuntu hirsute *
P11-kit Ubuntu impish *
P11-kit Ubuntu jammy *
P11-kit Ubuntu precise/esm *
P11-kit Ubuntu trusty *
P11-kit Ubuntu upstream *
P11-kit Ubuntu xenial *

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.

References