CVE Vulnerabilities

CVE-2020-35113

Out-of-bounds Write

Published: Jan 07, 2021 | Modified: Jan 12, 2021
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
6.8 MEDIUM
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
8.8 IMPORTANT
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

Mozilla developers reported memory safety bugs present in Firefox 83 and Firefox ESR 78.5. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 84, Thunderbird < 78.6, and Firefox ESR < 78.6.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Firefox Mozilla * 84.0 (excluding)
Firefox_esr Mozilla * 78.6.0 (excluding)
Thunderbird Mozilla * 78.6.0 (excluding)
Red Hat Enterprise Linux 7 RedHat firefox-0:78.6.0-1.el7_9 *
Red Hat Enterprise Linux 7 RedHat thunderbird-0:78.6.0-1.el7_9 *
Red Hat Enterprise Linux 8 RedHat firefox-0:78.6.0-1.el8_3 *
Red Hat Enterprise Linux 8 RedHat thunderbird-0:78.6.0-1.el8_3 *
Red Hat Enterprise Linux 8.0 Update Services for SAP Solutions RedHat firefox-0:78.6.0-1.el8_0 *
Red Hat Enterprise Linux 8.0 Update Services for SAP Solutions RedHat thunderbird-0:78.6.0-1.el8_0 *
Red Hat Enterprise Linux 8.1 Extended Update Support RedHat firefox-0:78.6.0-1.el8_1 *
Red Hat Enterprise Linux 8.1 Extended Update Support RedHat thunderbird-0:78.6.0-1.el8_1 *
Red Hat Enterprise Linux 8.2 Extended Update Support RedHat firefox-0:78.6.0-1.el8_2 *
Red Hat Enterprise Linux 8.2 Extended Update Support RedHat thunderbird-0:78.6.0-1.el8_2 *
Firefox Ubuntu bionic *
Firefox Ubuntu devel *
Firefox Ubuntu focal *
Firefox Ubuntu groovy *
Firefox Ubuntu hirsute *
Firefox Ubuntu impish *
Firefox Ubuntu jammy *
Firefox Ubuntu kinetic *
Firefox Ubuntu lunar *
Firefox Ubuntu mantic *
Firefox Ubuntu noble *
Firefox Ubuntu trusty *
Firefox Ubuntu upstream *
Firefox Ubuntu xenial *
Mozjs38 Ubuntu bionic *
Mozjs38 Ubuntu esm-apps/bionic *
Mozjs38 Ubuntu upstream *
Mozjs52 Ubuntu bionic *
Mozjs52 Ubuntu esm-apps/focal *
Mozjs52 Ubuntu esm-infra/bionic *
Mozjs52 Ubuntu focal *
Mozjs52 Ubuntu groovy *
Mozjs52 Ubuntu upstream *
Mozjs60 Ubuntu upstream *
Mozjs68 Ubuntu focal *
Mozjs68 Ubuntu groovy *
Mozjs68 Ubuntu upstream *
Mozjs78 Ubuntu esm-apps/jammy *
Mozjs78 Ubuntu groovy *
Mozjs78 Ubuntu hirsute *
Mozjs78 Ubuntu impish *
Mozjs78 Ubuntu jammy *
Mozjs78 Ubuntu kinetic *
Mozjs78 Ubuntu lunar *
Mozjs78 Ubuntu upstream *
Thunderbird Ubuntu bionic *
Thunderbird Ubuntu devel *
Thunderbird Ubuntu focal *
Thunderbird Ubuntu groovy *
Thunderbird Ubuntu hirsute *
Thunderbird Ubuntu impish *
Thunderbird Ubuntu jammy *
Thunderbird Ubuntu kinetic *
Thunderbird Ubuntu lunar *
Thunderbird Ubuntu mantic *
Thunderbird Ubuntu noble *
Thunderbird Ubuntu trusty *
Thunderbird Ubuntu upstream *
Thunderbird Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References