CVE Vulnerabilities

CVE-2020-36518

Out-of-bounds Write

Published: Mar 11, 2022 | Modified: Nov 29, 2022
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
7.5 MODERATE
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Ubuntu
MEDIUM

jackson-databind before 2.13.0 allows a Java StackOverflow exception and denial of service via a large depth of nested objects.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Jackson-databind Fasterxml * 2.12.6.1 (excluding)
Jackson-databind Fasterxml 2.13.0 (including) 2.13.2.1 (excluding)
Logging subsystem for Red Hat OpenShift 5.4 RedHat openshift-logging/elasticsearch6-rhel8:v6.8.1-265 *
OpenShift Logging 5.3 RedHat openshift-logging/elasticsearch6-rhel8:v6.8.1-277 *
Red Hat AMQ 7.10.0 RedHat jackson-databind *
Red Hat AMQ Streams 2.2.0 RedHat jackson-databind *
Red Hat AMQ Streams 2.4.0 RedHat *
Red Hat build of Eclipse Vert.x 4.2.7 RedHat jackson-databind *
Red Hat build of Quarkus 2.7.6 RedHat jackson-databind *
Red Hat Data Grid 8.3.1 RedHat jackson-databind *
Red Hat Enterprise Linux 8 RedHat pki-deps:10.6-8100020240205164017.e155f54d *
Red Hat Enterprise Linux 9 RedHat jackson-databind-0:2.14.1-2.el9 *
Red Hat Fuse 7.11 RedHat jackson-databind *
Red Hat JBoss Enterprise Application Platform 7 RedHat jackson-databind *
Red Hat JBoss Enterprise Application Platform 7.4 for RHEL 8 RedHat eap7-jackson-databind-0:2.12.6.1-1.redhat_00003.1.el8eap *
Red Hat JBoss Enterprise Application Platform 7.4 on RHEL 7 RedHat eap7-jackson-databind-0:2.12.6.1-1.redhat_00003.1.el7eap *
Red Hat Single Sign-On 7 RedHat jackson-databind *
Red Hat Single Sign-On 7.5 for RHEL 7 RedHat rh-sso7-keycloak-0:15.0.8-1.redhat_00001.1.el7sso *
Red Hat Single Sign-On 7.5 for RHEL 8 RedHat rh-sso7-keycloak-0:15.0.8-1.redhat_00001.1.el8sso *
Red Hat Single Sign-On 7.6.1 RedHat jackson-databind *
Red Hat Single Sign-On 7.6 for RHEL 7 RedHat rh-sso7-keycloak-0:18.0.3-1.redhat_00001.1.el7sso *
Red Hat Single Sign-On 7.6 for RHEL 8 RedHat rh-sso7-keycloak-0:18.0.3-1.redhat_00001.1.el8sso *
Red Hat Single Sign-On 7.6 for RHEL 9 RedHat rh-sso7-0:1-5.el9sso *
Red Hat Single Sign-On 7.6 for RHEL 9 RedHat rh-sso7-javapackages-tools-0:6.0.0-7.el9sso *
Red Hat Single Sign-On 7.6 for RHEL 9 RedHat rh-sso7-keycloak-0:18.0.3-1.redhat_00001.1.el9sso *
RHAF Camel-K 1.8 RedHat jackson-databind *
RHOL-5.5-RHEL-8 RedHat openshift-logging/elasticsearch6-rhel8:v6.8.1-273 *
RHOL-5.6-RHEL-8 RedHat openshift-logging/elasticsearch6-rhel8:v6.8.1-285 *
RHPAM 7.13.1 async RedHat jackson-databind *
Jackson-databind Ubuntu bionic *
Jackson-databind Ubuntu impish *
Jackson-databind Ubuntu kinetic *
Jackson-databind Ubuntu lunar *
Jackson-databind Ubuntu mantic *
Jackson-databind Ubuntu trusty *
Jackson-databind Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References