CVE Vulnerabilities

CVE-2020-36825

Unrestricted Upload of File with Dangerous Type

Published: Mar 24, 2024 | Modified: May 24, 2024
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

** UNSUPPORTED WHEN ASSIGNED ** ** DISPUTED ** A vulnerability has been found in cyberaz0r WebRAT up to 20191222 and classified as critical. This vulnerability affects the function download_file of the file Server/api.php. The manipulation of the argument name leads to unrestricted upload. The attack can be initiated remotely. The real existence of this vulnerability is still doubted at the moment. The patch is identified as 0c394a795b9c10c07085361e6fcea286ee793701. It is recommended to apply a patch to fix this issue. VDB-257782 is the identifier assigned to this vulnerability. NOTE: This vulnerability only affects products that are no longer supported by the maintainer. NOTE: The issue, discovered in a 20-stars GitHub project (now private) by its author, had CVE requested by a third party 4 years post-resolution, referencing the fix commit (now a broken link). Due to minimal attention and usage, it should not be eligible for CVE according to the project maintainer.

Weakness

The product allows the attacker to upload or transfer files of dangerous types that can be automatically processed within the product’s environment.

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • For example, limiting filenames to alphanumeric characters can help to restrict the introduction of unintended file extensions.
  • Run the code in a “jail” or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.
  • OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.
  • This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.
  • Be careful to avoid CWE-243 and other weaknesses related to jails.

References