CVE Vulnerabilities

CVE-2020-6265

Use of Hard-coded Credentials

Published: Jun 09, 2020 | Modified: Nov 21, 2024
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.5 HIGH
AV:N/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

SAP Commerce, versions - 6.7, 1808, 1811, 1905, and SAP Commerce (Data Hub), versions - 6.7, 1808, 1811, 1905, allows an attacker to bypass the authentication and/or authorization that has been configured by the system administrator due to the use of Hardcoded Credentials.

Weakness

The product contains hard-coded credentials, such as a password or cryptographic key.

Affected Software

Name Vendor Start Version End Version
Commerce Sap 6.7 (including) 6.7 (including)
Commerce Sap 1808 (including) 1808 (including)
Commerce Sap 1811 (including) 1811 (including)
Commerce Sap 1905 (including) 1905 (including)
Commerce_data_hub Sap 6.7 (including) 6.7 (including)
Commerce_data_hub Sap 1808 (including) 1808 (including)
Commerce_data_hub Sap 1811 (including) 1811 (including)
Commerce_data_hub Sap 1905 (including) 1905 (including)

Extended Description

There are two main variations:

Potential Mitigations

  • For outbound authentication: store passwords, keys, and other credentials outside of the code in a strongly-protected, encrypted configuration file or database that is protected from access by all outsiders, including other local users on the same system. Properly protect the key (CWE-320). If you cannot use encryption to protect the file, then make sure that the permissions are as restrictive as possible [REF-7].
  • In Windows environments, the Encrypted File System (EFS) may provide some protection.
  • For inbound authentication using passwords: apply strong one-way hashes to passwords and store those hashes in a configuration file or database with appropriate access control. That way, theft of the file/database still requires the attacker to try to crack the password. When handling an incoming password during authentication, take the hash of the password and compare it to the saved hash.
  • Use randomly assigned salts for each separate hash that is generated. This increases the amount of computation that an attacker needs to conduct a brute-force attack, possibly limiting the effectiveness of the rainbow table method.
  • For front-end to back-end connections: Three solutions are possible, although none are complete.

References