CVE Vulnerabilities

CVE-2020-6851

Out-of-bounds Write

Published: Jan 13, 2020 | Modified: Nov 07, 2023
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
8.1 IMPORTANT
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

OpenJPEG through 2.3.1 has a heap-based buffer overflow in opj_t1_clbl_decode_processor in openjp2/t1.c because of lack of opj_j2k_update_image_dimensions validation.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Openjpeg Uclouvain * 2.3.1 (including)
Red Hat Enterprise Linux 7 RedHat openjpeg2-0:2.3.1-2.el7_7 *
Red Hat Enterprise Linux 8 RedHat openjpeg2-0:2.3.1-2.el8_1 *
Red Hat Enterprise Linux 8.0 Update Services for SAP Solutions RedHat openjpeg2-0:2.3.0-9.el8_0 *
Blender Ubuntu bionic *
Blender Ubuntu disco *
Blender Ubuntu eoan *
Blender Ubuntu groovy *
Blender Ubuntu hirsute *
Blender Ubuntu impish *
Blender Ubuntu kinetic *
Blender Ubuntu lunar *
Blender Ubuntu mantic *
Blender Ubuntu trusty *
Blender Ubuntu xenial *
Ghostscript Ubuntu bionic *
Ghostscript Ubuntu trusty *
Ghostscript Ubuntu xenial *
Insighttoolkit4 Ubuntu bionic *
Insighttoolkit4 Ubuntu disco *
Insighttoolkit4 Ubuntu eoan *
Insighttoolkit4 Ubuntu groovy *
Insighttoolkit4 Ubuntu hirsute *
Insighttoolkit4 Ubuntu impish *
Insighttoolkit4 Ubuntu kinetic *
Insighttoolkit4 Ubuntu lunar *
Insighttoolkit4 Ubuntu trusty *
Insighttoolkit4 Ubuntu xenial *
Openjpeg2 Ubuntu bionic *
Openjpeg2 Ubuntu devel *
Openjpeg2 Ubuntu disco *
Openjpeg2 Ubuntu eoan *
Openjpeg2 Ubuntu focal *
Openjpeg2 Ubuntu groovy *
Openjpeg2 Ubuntu hirsute *
Openjpeg2 Ubuntu impish *
Openjpeg2 Ubuntu jammy *
Openjpeg2 Ubuntu kinetic *
Openjpeg2 Ubuntu lunar *
Openjpeg2 Ubuntu mantic *
Openjpeg2 Ubuntu noble *
Openjpeg2 Ubuntu oracular *
Openjpeg2 Ubuntu upstream *
Openjpeg2 Ubuntu xenial *
Qtwebengine-opensource-src Ubuntu bionic *
Qtwebengine-opensource-src Ubuntu disco *
Qtwebengine-opensource-src Ubuntu eoan *
Qtwebengine-opensource-src Ubuntu groovy *
Qtwebengine-opensource-src Ubuntu hirsute *
Qtwebengine-opensource-src Ubuntu impish *
Qtwebengine-opensource-src Ubuntu kinetic *
Qtwebengine-opensource-src Ubuntu lunar *
Qtwebengine-opensource-src Ubuntu mantic *
Texmaker Ubuntu bionic *
Texmaker Ubuntu disco *
Texmaker Ubuntu eoan *
Texmaker Ubuntu groovy *
Texmaker Ubuntu hirsute *
Texmaker Ubuntu impish *
Texmaker Ubuntu kinetic *
Texmaker Ubuntu lunar *
Texmaker Ubuntu mantic *
Texmaker Ubuntu trusty *
Texmaker Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References