A vulnerability in processing of certain DHCP packets from adjacent clients on EX Series and QFX Series switches running Juniper Networks Junos OS with DHCP local/relay server configured may lead to exhaustion of DMA memory causing a Denial of Service (DoS). Over time, exploitation of this vulnerability may cause traffic to stop being forwarded, or to crashing of the fxpc process. When Packet DMA heap utilization reaches 99%, the system will become unstable. Packet DMA heap utilization can be monitored through the following command: user@junos# request pfe execute target fpc0 timeout 30 command show heap ID Base Total(b) Free(b) Used(b) % Name – ———- ———– ———– ———– — ———– 0 213301a8 536870488 387228840 149641648 27 Kernel 1 91800000 8388608 3735120 4653488 55 DMA 2 92000000 75497472 74452192 1045280 1 PKT DMA DESC 3 d330000 335544320 257091400 78452920 23 Bcm_sdk 4 96800000 184549376 2408 184546968 99 Packet DMA <— 5 903fffe0 20971504 20971504 0 0 Blob An indication of the issue occurring may be observed through the following log messages: Dec 10 08:07:00.124 2020 hostname fpc0 brcm_pkt_buf_alloc:523 (buf alloc) failed allocating packet buffer Dec 10 08:07:00.126 2020 hostname fpc0 (buf alloc) failed allocating packet buffer Dec 10 08:07:00.128 2020 hostname fpc0 brcm_pkt_buf_alloc:523 (buf alloc) failed allocating packet buffer Dec 10 08:07:00.130 2020 hostnameC fpc0 (buf alloc) failed allocating packet buffer This issue affects Juniper Networks Junos OS on EX Series and QFX Series: 17.4R3 versions prior to 17.4R3-S3; 18.1R3 versions between 18.1R3-S6 and 18.1R3-S11; 18.2R3 versions prior to 18.2R3-S6; 18.3R3 versions prior to 18.3R3-S4; 18.4R2 versions prior to 18.4R2-S5; 18.4R3 versions prior to 18.4R3-S6; 19.1 versions between 19.1R2 and 19.1R3-S3; 19.2 versions prior to 19.2R3-S1; 19.3 versions prior to 19.3R2-S5, 19.3R3; 19.4 versions prior to 19.4R2-S2, 19.4R3; 20.1 versions prior to 20.1R2; 20.2 versions prior to 20.2R1-S2, 20.2R2. Junos OS versions prior to 17.4R3 are unaffected by this vulnerability.
The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Junos | Juniper | 17.4-r3 (including) | 17.4-r3 (including) |
Junos | Juniper | 17.4-r3-s1 (including) | 17.4-r3-s1 (including) |
Junos | Juniper | 17.4-r3-s2 (including) | 17.4-r3-s2 (including) |
Junos | Juniper | 18.1-r3-s10 (including) | 18.1-r3-s10 (including) |
Junos | Juniper | 18.1-r3-s7 (including) | 18.1-r3-s7 (including) |
Junos | Juniper | 18.1-r3-s8 (including) | 18.1-r3-s8 (including) |
Junos | Juniper | 18.1-r3-s9 (including) | 18.1-r3-s9 (including) |
Junos | Juniper | 18.2-r3 (including) | 18.2-r3 (including) |
Junos | Juniper | 18.2-r3-s1 (including) | 18.2-r3-s1 (including) |
Junos | Juniper | 18.2-r3-s2 (including) | 18.2-r3-s2 (including) |
Junos | Juniper | 18.2-r3-s3 (including) | 18.2-r3-s3 (including) |
Junos | Juniper | 18.2-r3-s4 (including) | 18.2-r3-s4 (including) |
Junos | Juniper | 18.2-r3-s5 (including) | 18.2-r3-s5 (including) |
Junos | Juniper | 18.3-r3 (including) | 18.3-r3 (including) |
Junos | Juniper | 18.3-r3-s1 (including) | 18.3-r3-s1 (including) |
Junos | Juniper | 18.3-r3-s2 (including) | 18.3-r3-s2 (including) |
Junos | Juniper | 18.3-r3-s3 (including) | 18.3-r3-s3 (including) |
Junos | Juniper | 18.4-r2 (including) | 18.4-r2 (including) |
Junos | Juniper | 18.4-r2-s1 (including) | 18.4-r2-s1 (including) |
Junos | Juniper | 18.4-r2-s2 (including) | 18.4-r2-s2 (including) |
Junos | Juniper | 18.4-r2-s3 (including) | 18.4-r2-s3 (including) |
Junos | Juniper | 18.4-r2-s4 (including) | 18.4-r2-s4 (including) |
Junos | Juniper | 19.1-r2-s1 (including) | 19.1-r2-s1 (including) |
Junos | Juniper | 19.1-r3 (including) | 19.1-r3 (including) |
Junos | Juniper | 19.1-r3-s1 (including) | 19.1-r3-s1 (including) |
Junos | Juniper | 19.1-r3-s2 (including) | 19.1-r3-s2 (including) |
Junos | Juniper | 19.2 (including) | 19.2 (including) |
Junos | Juniper | 19.2-r1 (including) | 19.2-r1 (including) |
Junos | Juniper | 19.2-r1-s1 (including) | 19.2-r1-s1 (including) |
Junos | Juniper | 19.2-r1-s2 (including) | 19.2-r1-s2 (including) |
Junos | Juniper | 19.2-r1-s3 (including) | 19.2-r1-s3 (including) |
Junos | Juniper | 19.2-r1-s4 (including) | 19.2-r1-s4 (including) |
Junos | Juniper | 19.2-r2 (including) | 19.2-r2 (including) |
Junos | Juniper | 19.2-r3 (including) | 19.2-r3 (including) |
Junos | Juniper | 19.3 (including) | 19.3 (including) |
Junos | Juniper | 19.3-r1 (including) | 19.3-r1 (including) |
Junos | Juniper | 19.3-r1-s1 (including) | 19.3-r1-s1 (including) |
Junos | Juniper | 19.3-r2 (including) | 19.3-r2 (including) |
Junos | Juniper | 19.3-r2-s1 (including) | 19.3-r2-s1 (including) |
Junos | Juniper | 19.3-r2-s2 (including) | 19.3-r2-s2 (including) |
Junos | Juniper | 19.3-r2-s3 (including) | 19.3-r2-s3 (including) |
Junos | Juniper | 19.3-r2-s4 (including) | 19.3-r2-s4 (including) |
Junos | Juniper | 19.4-r1 (including) | 19.4-r1 (including) |
Junos | Juniper | 19.4-r1-s1 (including) | 19.4-r1-s1 (including) |
Junos | Juniper | 19.4-r1-s2 (including) | 19.4-r1-s2 (including) |
Junos | Juniper | 19.4-r2 (including) | 19.4-r2 (including) |
Junos | Juniper | 19.4-r2-s1 (including) | 19.4-r2-s1 (including) |
Junos | Juniper | 20.1-r1 (including) | 20.1-r1 (including) |
Junos | Juniper | 20.1-r1-s1 (including) | 20.1-r1-s1 (including) |
Junos | Juniper | 20.1-r1-s2 (including) | 20.1-r1-s2 (including) |
Junos | Juniper | 20.1-r1-s3 (including) | 20.1-r1-s3 (including) |
Junos | Juniper | 20.2-r1 (including) | 20.2-r1 (including) |
Junos | Juniper | 20.2-r1-s1 (including) | 20.2-r1-s1 (including) |
Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Consider adhering to the following rules when allocating and managing an application’s memory:
Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].