CVE Vulnerabilities

CVE-2021-1387

Missing Release of Memory after Effective Lifetime

Published: Feb 24, 2021 | Modified: Nov 07, 2023
CVSS 3.x
8.6
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu

A vulnerability in the network stack of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability exists because the software improperly releases resources when it processes certain IPv6 packets that are destined to an affected device. An attacker could exploit this vulnerability by sending multiple crafted IPv6 packets to an affected device. A successful exploit could cause the network stack to run out of available buffers, impairing operations of control plane and management plane protocols and resulting in a DoS condition. Manual intervention would be required to restore normal operations on the affected device. For more information about the impact of this vulnerability, see the Details section of this advisory.

Weakness

The product does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory.

Affected Software

Name Vendor Start Version End Version
Unified_computing_system Cisco 4.0 (including) 4.0(4k) (excluding)
Unified_computing_system Cisco 4.1 (including) 4.1(1e) (excluding)

Potential Mitigations

  • Choose a language or tool that provides automatic memory management, or makes manual memory management less error-prone.
  • For example, glibc in Linux provides protection against free of invalid pointers.
  • When using Xcode to target OS X or iOS, enable automatic reference counting (ARC) [REF-391].
  • To help correctly and consistently manage memory when programming in C++, consider using a smart pointer class such as std::auto_ptr (defined by ISO/IEC ISO/IEC 14882:2003), std::shared_ptr and std::unique_ptr (specified by an upcoming revision of the C++ standard, informally referred to as C++ 1x), or equivalent solutions such as Boost.

References