CVE Vulnerabilities

CVE-2021-1567

Uncontrolled Search Path Element

Published: Jun 16, 2021 | Modified: Aug 05, 2022
CVSS 3.x
6.7
MEDIUM
Source:
NVD
CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
6.2 MEDIUM
AV:L/AC:H/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
Ubuntu

A vulnerability in the DLL loading mechanism of Cisco AnyConnect Secure Mobility Client for Windows could allow an authenticated, local attacker to perform a DLL hijacking attack on an affected device if the VPN Posture (HostScan) Module is installed on the AnyConnect client. This vulnerability is due to a race condition in the signature verification process for DLL files that are loaded on an affected device. An attacker could exploit this vulnerability by sending a series of crafted interprocess communication (IPC) messages to the AnyConnect process. A successful exploit could allow the attacker to execute arbitrary code on the affected device with SYSTEM privileges. To exploit this vulnerability, the attacker must have valid credentials on the Windows system.

Weakness

The product uses a fixed or controlled search path to find resources, but one or more locations in that path can be under the control of unintended actors.

Affected Software

Name Vendor Start Version End Version
Anyconnect_secure_mobility_client Cisco * *

Extended Description

Although this weakness can occur with any type of resource, it is frequently introduced when a product uses a directory search path to find executables or code libraries, but the path contains a directory that can be modified by an attacker, such as “/tmp” or the current working directory. In Windows-based systems, when the LoadLibrary or LoadLibraryEx function is called with a DLL name that does not contain a fully qualified path, the function follows a search order that includes two path elements that might be uncontrolled:

In some cases, the attack can be conducted remotely, such as when SMB or WebDAV network shares are used. One or more locations in that path could include the Windows drive root or its subdirectories. This often exists in Linux-based code assuming the controlled nature of the root directory (/) or its subdirectories (/etc, etc), or a code that recursively accesses the parent directory. In Windows, the drive root and some of its subdirectories have weak permissions by default, which makes them uncontrolled. In some Unix-based systems, a PATH might be created that contains an empty element, e.g. by splicing an empty variable into the PATH. This empty element can be interpreted as equivalent to the current working directory, which might be an untrusted search element. In software package management frameworks (e.g., npm, RubyGems, or PyPi), the framework may identify dependencies on third-party libraries or other packages, then consult a repository that contains the desired package. The framework may search a public repository before a private repository. This could be exploited by attackers by placing a malicious package in the public repository that has the same name as a package from the private repository. The search path might not be directly under control of the developer relying on the framework, but this search order effectively contains an untrusted element.

Potential Mitigations

References