CVE Vulnerabilities

CVE-2021-23436

Access of Resource Using Incompatible Type ('Type Confusion')

Published: Sep 01, 2021 | Modified: Sep 10, 2021
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.5 HIGH
AV:N/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
9.8 IMPORTANT
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Ubuntu

This affects the package immer before 9.0.6. A type confusion vulnerability can lead to a bypass of CVE-2020-28477 when the user-provided keys used in the path parameter are arrays. In particular, this bypass is possible because the condition (p === proto || p === constructor) in applyPatches_ returns false if p is [proto] (or [constructor]). The === operator (strict equality operator) returns false if the operands have different type.

Weakness

The product allocates or initializes a resource such as a pointer, object, or variable using one type, but it later accesses that resource using a type that is incompatible with the original type.

Affected Software

Name Vendor Start Version End Version
Immer Immer_project * 9.0.6 (excluding)
RHPAM 7.13.1 async RedHat *

Extended Description

When the product accesses the resource using an incompatible type, this could trigger logical errors because the resource does not have expected properties. In languages without memory safety, such as C and C++, type confusion can lead to out-of-bounds memory access. While this weakness is frequently associated with unions when parsing data with many different embedded object types in C, it can be present in any application that can interpret the same variable or memory location in multiple ways. This weakness is not unique to C and C++. For example, errors in PHP applications can be triggered by providing array parameters when scalars are expected, or vice versa. Languages such as Perl, which perform automatic conversion of a variable of one type when it is accessed as if it were another type, can also contain these issues.

References