CVE Vulnerabilities

CVE-2021-25217

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: May 26, 2021 | Modified: Nov 07, 2023
CVSS 3.x
7.4
HIGH
Source:
NVD
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H
CVSS 2.x
3.3 LOW
AV:A/AC:L/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu

In ISC DHCP 4.1-ESV-R1 -> 4.1-ESV-R16, ISC DHCP 4.4.0 -> 4.4.2 (Other branches of ISC DHCP (i.e., releases in the 4.0.x series or lower and releases in the 4.3.x series) are beyond their End-of-Life (EOL) and no longer supported by ISC. From inspection it is clear that the defect is also present in releases from those series, but they have not been officially tested for the vulnerability), The outcome of encountering the defect while reading a lease that will trigger it varies, according to: the component being affected (i.e., dhclient or dhcpd) whether the package was built as a 32-bit or 64-bit binary whether the compiler flag -fstack-protection-strong was used when compiling In dhclient, ISC has not successfully reproduced the error on a 64-bit system. However, on a 32-bit system it is possible to cause dhclient to crash when reading an improper lease, which could cause network connectivity problems for an affected system due to the absence of a running DHCP client process. In dhcpd, when run in DHCPv4 or DHCPv6 mode: if the dhcpd server binary was built for a 32-bit architecture AND the -fstack-protection-strong flag was specified to the compiler, dhcpd may exit while parsing a lease file containing an objectionable lease, resulting in lack of service to clients. Additionally, the offending lease and the lease immediately following it in the lease database may be improperly deleted. if the dhcpd server binary was built for a 64-bit architecture OR if the -fstack-protection-strong compiler flag was NOT specified, the crash will not occur, but it is possible for the offending lease and the lease which immediately followed it to be improperly deleted.

Weakness

The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Dhcp Isc 4.4.0 (including) 4.4.2 (including)
Dhcp Isc 4.1-esv-r1 (including) 4.1-esv-r1 (including)
Dhcp Isc 4.1-esv-r10 (including) 4.1-esv-r10 (including)
Dhcp Isc 4.1-esv-r10_b1 (including) 4.1-esv-r10_b1 (including)
Dhcp Isc 4.1-esv-r10_rc1 (including) 4.1-esv-r10_rc1 (including)
Dhcp Isc 4.1-esv-r10b1 (including) 4.1-esv-r10b1 (including)
Dhcp Isc 4.1-esv-r10rc1 (including) 4.1-esv-r10rc1 (including)
Dhcp Isc 4.1-esv-r11 (including) 4.1-esv-r11 (including)
Dhcp Isc 4.1-esv-r11_b1 (including) 4.1-esv-r11_b1 (including)
Dhcp Isc 4.1-esv-r11_rc1 (including) 4.1-esv-r11_rc1 (including)
Dhcp Isc 4.1-esv-r11_rc2 (including) 4.1-esv-r11_rc2 (including)
Dhcp Isc 4.1-esv-r11b1 (including) 4.1-esv-r11b1 (including)
Dhcp Isc 4.1-esv-r11rc1 (including) 4.1-esv-r11rc1 (including)
Dhcp Isc 4.1-esv-r11rc2 (including) 4.1-esv-r11rc2 (including)
Dhcp Isc 4.1-esv-r12 (including) 4.1-esv-r12 (including)
Dhcp Isc 4.1-esv-r12-p1 (including) 4.1-esv-r12-p1 (including)
Dhcp Isc 4.1-esv-r12_b1 (including) 4.1-esv-r12_b1 (including)
Dhcp Isc 4.1-esv-r12_p1 (including) 4.1-esv-r12_p1 (including)
Dhcp Isc 4.1-esv-r12b1 (including) 4.1-esv-r12b1 (including)
Dhcp Isc 4.1-esv-r13 (including) 4.1-esv-r13 (including)
Dhcp Isc 4.1-esv-r13_b1 (including) 4.1-esv-r13_b1 (including)
Dhcp Isc 4.1-esv-r13b1 (including) 4.1-esv-r13b1 (including)
Dhcp Isc 4.1-esv-r14 (including) 4.1-esv-r14 (including)
Dhcp Isc 4.1-esv-r14_b1 (including) 4.1-esv-r14_b1 (including)
Dhcp Isc 4.1-esv-r14b1 (including) 4.1-esv-r14b1 (including)
Dhcp Isc 4.1-esv-r15 (including) 4.1-esv-r15 (including)
Dhcp Isc 4.1-esv-r15-p1 (including) 4.1-esv-r15-p1 (including)
Dhcp Isc 4.1-esv-r15_b1 (including) 4.1-esv-r15_b1 (including)
Dhcp Isc 4.1-esv-r16 (including) 4.1-esv-r16 (including)

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References