IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldnt have access to anymore (CVE-2021-28696).
The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. This allows attackers to bypass intended access restrictions.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Xen | Xen | * | * |
Xen | Ubuntu | bionic | * |
Xen | Ubuntu | hirsute | * |
Xen | Ubuntu | impish | * |
Xen | Ubuntu | kinetic | * |
Xen | Ubuntu | lunar | * |
Xen | Ubuntu | mantic | * |
Xen | Ubuntu | trusty | * |
Xen | Ubuntu | xenial | * |
Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user’s privileges and any permissions or other access-control specifications that apply to the resource. When access control checks are incorrectly applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.