CVE Vulnerabilities

CVE-2021-32714

Integer Overflow or Wraparound

Published: Jul 07, 2021 | Modified: Jul 22, 2021
CVSS 3.x
9.1
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H
CVSS 2.x
6.4 MEDIUM
AV:N/AC:L/Au:N/C:N/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

hyper is an HTTP library for Rust. In versions prior to 0.14.10, hypers HTTP server and client code had a flaw that could trigger an integer overflow when decoding chunk sizes that are too big. This allows possible data loss, or if combined with an upstream HTTP proxy that allows chunk sizes larger than hyper does, can result in request smuggling or desync attacks. The vulnerability is patched in version 0.14.10. Two possible workarounds exist. One may reject requests manually that contain a Transfer-Encoding header or ensure any upstream proxy rejects Transfer-Encoding chunk sizes greater than what fits in 64-bit unsigned integers.

Weakness

The product performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control.

Affected Software

Name Vendor Start Version End Version
Hyper Hyper * 0.14.10 (excluding)
Rust-hyper Ubuntu esm-apps/focal *
Rust-hyper Ubuntu focal *
Rust-hyper Ubuntu hirsute *
Rust-hyper Ubuntu impish *
Rust-hyper Ubuntu kinetic *
Rust-hyper Ubuntu trusty *
Rust-hyper Ubuntu upstream *
Rust-hyper Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • If possible, choose a language or compiler that performs automatic bounds checking.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
  • Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
  • Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
  • Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
  • Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
  • Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.

References