CVE Vulnerabilities

CVE-2021-37658

Access of Uninitialized Pointer

Published: Aug 12, 2021 | Modified: Aug 18, 2021
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
4.6 MEDIUM
AV:L/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type tf.raw_ops.MatrixSetDiagV*. The implementation has incomplete validation that the value of k is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

Weakness

The product accesses or uses a pointer that has not been initialized.

Affected Software

Name Vendor Start Version End Version
Tensorflow Google 2.3.0 (including) 2.3.4 (excluding)
Tensorflow Google 2.4.0 (including) 2.4.3 (excluding)
Tensorflow Google 2.5.0 (including) 2.5.0 (including)
Tensorflow Google 2.6.0-rc0 (including) 2.6.0-rc0 (including)
Tensorflow Google 2.6.0-rc1 (including) 2.6.0-rc1 (including)
Tensorflow Google 2.6.0-rc2 (including) 2.6.0-rc2 (including)

Extended Description

If the pointer contains an uninitialized value, then the value might not point to a valid memory location. This could cause the product to read from or write to unexpected memory locations, leading to a denial of service. If the uninitialized pointer is used as a function call, then arbitrary functions could be invoked. If an attacker can influence the portion of uninitialized memory that is contained in the pointer, this weakness could be leveraged to execute code or perform other attacks. Depending on memory layout, associated memory management behaviors, and product operation, the attacker might be able to influence the contents of the uninitialized pointer, thus gaining more fine-grained control of the memory location to be accessed.

References