TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in tf.raw_ops.MaxPoolGrad
caused by missing validation. The implementation misses some validation for the orig_input
and orig_output
tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
The product receives input that is expected to specify a quantity (such as size or length), but it does not validate or incorrectly validates that the quantity has the required properties.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Tensorflow | 2.3.0 (including) | 2.3.4 (excluding) | |
Tensorflow | 2.4.0 (including) | 2.4.3 (excluding) | |
Tensorflow | 2.5.0 (including) | 2.5.0 (including) | |
Tensorflow | 2.6.0-rc0 (including) | 2.6.0-rc0 (including) | |
Tensorflow | 2.6.0-rc1 (including) | 2.6.0-rc1 (including) | |
Tensorflow | 2.6.0-rc2 (including) | 2.6.0-rc2 (including) |
Specified quantities include size, length, frequency, price, rate, number of operations, time, and others. Code may rely on specified quantities to allocate resources, perform calculations, control iteration, etc. When the quantity is not properly validated, then attackers can specify malicious quantities to cause excessive resource allocation, trigger unexpected failures, enable buffer overflows, etc.