CVE Vulnerabilities

CVE-2021-38314

Use of Password Hash With Insufficient Computational Effort

Published: Sep 02, 2021 | Modified: Jul 10, 2023
CVSS 3.x
5.3
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:P/I:N/A:N
RedHat/V2
RedHat/V3
Ubuntu

The Gutenberg Template Library & Redux Framework plugin <= 4.2.11 for WordPress registered several AJAX actions available to unauthenticated users in the includes function in redux-core/class-redux-core.php that were unique to a given site but deterministic and predictable given that they were based on an md5 hash of the site URL with a known salt value of -redux and an md5 hash of the previous hash with a known salt value of -support. These AJAX actions could be used to retrieve a list of active plugins and their versions, the sites PHP version, and an unsalted md5 hash of site’s AUTH_KEY concatenated with the SECURE_AUTH_KEY.

Weakness 

The product generates a hash for a password, but it uses a scheme that does not provide a sufficient level of computational effort that would make password cracking attacks infeasible or expensive.

Affected Software 

Name Vendor Start Version End Version
Gutenberg_template_library_&_redux_framework Redux * 4.2.11 (including)

Extended Description 

Many password storage mechanisms compute a hash and store the hash, instead of storing the original password in plaintext. In this design, authentication involves accepting an incoming password, computing its hash, and comparing it to the stored hash. Many hash algorithms are designed to execute quickly with minimal overhead, even cryptographic hashes. However, this efficiency is a problem for password storage, because it can reduce an attacker’s workload for brute-force password cracking. If an attacker can obtain the hashes through some other method (such as SQL injection on a database that stores hashes), then the attacker can store the hashes offline and use various techniques to crack the passwords by computing hashes efficiently. Without a built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the entire space of all possible passwords, within a very short amount of time, using massively-parallel computing (such as cloud computing) and GPU, ASIC, or FPGA hardware. In such a scenario, an efficient hash algorithm helps the attacker. There are several properties of a hash scheme that are relevant to its strength against an offline, massively-parallel attack:

Note that the security requirements for the product may vary depending on the environment and the value of the passwords. Different schemes might not provide all of these properties, yet may still provide sufficient security for the environment. Conversely, a solution might be very strong in preserving one property, which still being very weak for an attack against another property, or it might not be able to significantly reduce the efficiency of a massively-parallel attack.

Potential Mitigations 

  • Use an adaptive hash function that can be configured to change the amount of computational effort needed to compute the hash, such as the number of iterations (“stretching”) or the amount of memory required. Some hash functions perform salting automatically. These functions can significantly increase the overhead for a brute force attack compared to intentionally-fast functions such as MD5. For example, rainbow table attacks can become infeasible due to the high computing overhead. Finally, since computing power gets faster and cheaper over time, the technique can be reconfigured to increase the workload without forcing an entire replacement of the algorithm in use.
  • Some hash functions that have one or more of these desired properties include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active debate about which of these is the most effective, they are all stronger than using salts with hash functions with very little computing overhead.
  • Note that using these functions can have an impact on performance, so they require special consideration to avoid denial-of-service attacks. However, their configurability provides finer control over how much CPU and memory is used, so it could be adjusted to suit the environment’s needs.

References