CVE Vulnerabilities

CVE-2021-39206

Incorrect Authorization

Published: Sep 09, 2021 | Modified: Sep 27, 2021
CVSS 3.x
8.6
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:N
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:N/I:P/A:N
RedHat/V2
RedHat/V3
Ubuntu

Pomerium is an open source identity-aware access proxy. Envoy, which Pomerium is based on, contains two authorization related vulnerabilities CVE-2021-32777 and CVE-2021-32779. This may lead to incorrect routing or authorization policy decisions. With specially crafted requests, incorrect authorization or routing decisions may be made by Pomerium. Pomerium v0.14.8 and v0.15.1 contain an upgraded envoy binary with these vulnerabilities patched. This issue can only be triggered when using path prefix based policy. Removing any such policies should provide mitigation.

Weakness

The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. This allows attackers to bypass intended access restrictions.

Affected Software

Name Vendor Start Version End Version
Envoy Envoyproxy * 1.16.5 (excluding)
Envoy Envoyproxy 1.17.0 (including) 1.17.4 (excluding)
Envoy Envoyproxy 1.18.0 (including) 1.18.4 (excluding)
Envoy Envoyproxy 1.19.0 (including) 1.19.0 (including)
Pomerium Pomerium 0.11.0 (including) 0.14.8 (excluding)
Pomerium Pomerium 0.15.0 (including) 0.15.0 (including)

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user’s privileges and any permissions or other access-control specifications that apply to the resource. When access control checks are incorrectly applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.

Potential Mitigations

  • Divide the product into anonymous, normal, privileged, and administrative areas. Reduce the attack surface by carefully mapping roles with data and functionality. Use role-based access control (RBAC) [REF-229] to enforce the roles at the appropriate boundaries.
  • Note that this approach may not protect against horizontal authorization, i.e., it will not protect a user from attacking others with the same role.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, consider using authorization frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI Access Control feature [REF-45].
  • For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any unauthorized functionality or information by simply requesting direct access to that page.
  • One way to do this is to ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page.

References