FreeSWITCH is a Software Defined Telecom Stack enabling the digital transformation from proprietary telecom switches to a software implementation that runs on any commodity hardware. By default, SIP requests of the type SUBSCRIBE are not authenticated in the affected versions of FreeSWITCH. Abuse of this security issue allows attackers to subscribe to user agent event notifications without the need to authenticate. This abuse poses privacy concerns and might lead to social engineering or similar attacks. For example, attackers may be able to monitor the status of target SIP extensions. Although this issue was fixed in version v1.10.6, installations upgraded to the fixed version of FreeSWITCH from an older version, may still be vulnerable if the configuration is not updated accordingly. Software upgrades do not update the configuration by default. SIP SUBSCRIBE messages should be authenticated by default so that FreeSWITCH administrators do not need to explicitly set the auth-subscriptions
parameter. When following such a recommendation, a new parameter can be introduced to explicitly disable authentication.
Weakness
The product does not perform any authentication for functionality that requires a provable user identity or consumes a significant amount of resources.
Affected Software
Name |
Vendor |
Start Version |
End Version |
Freeswitch |
Freeswitch |
* |
1.10.6 (excluding) |
Extended Description
As data is migrated to the cloud, if access does not require authentication, it can be easier for attackers to access the data from anywhere on the Internet.
Potential Mitigations
- Divide the software into anonymous, normal, privileged, and administrative areas. Identify which of these areas require a proven user identity, and use a centralized authentication capability.
- Identify all potential communication channels, or other means of interaction with the software, to ensure that all channels are appropriately protected. Developers sometimes perform authentication at the primary channel, but open up a secondary channel that is assumed to be private. For example, a login mechanism may be listening on one network port, but after successful authentication, it may open up a second port where it waits for the connection, but avoids authentication because it assumes that only the authenticated party will connect to the port.
- In general, if the software or protocol allows a single session or user state to persist across multiple connections or channels, authentication and appropriate credential management need to be used throughout.
- Where possible, avoid implementing custom authentication routines and consider using authentication capabilities as provided by the surrounding framework, operating system, or environment. These may make it easier to provide a clear separation between authentication tasks and authorization tasks.
- In environments such as the World Wide Web, the line between authentication and authorization is sometimes blurred. If custom authentication routines are required instead of those provided by the server, then these routines must be applied to every single page, since these pages could be requested directly.
- Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
- For example, consider using libraries with authentication capabilities such as OpenSSL or the ESAPI Authenticator [REF-45].
References