vault-cli is a configurable command-line interface tool (and python library) to interact with Hashicorp Vault. In versions before 3.0.0 vault-cli features the ability for rendering templated values. When a secret starts with the prefix !template!
, vault-cli interprets the rest of the contents of the secret as a Jinja2 template. Jinja2 is a powerful templating engine and is not designed to safely render arbitrary templates. An attacker controlling a jinja2 template rendered on a machine can trigger arbitrary code, making this a Remote Code Execution (RCE) risk. If the content of the vault can be completely trusted, then this is not a problem. Otherwise, if your threat model includes cases where an attacker can manipulate a secret value read from the vault using vault-cli, then this vulnerability may impact you. In 3.0.0, the code related to interpreting vault templated secrets has been removed entirely. Users are advised to upgrade as soon as possible. For users unable to upgrade a workaround does exist. Using the environment variable VAULT_CLI_RENDER=false
or the flag --no-render
(placed between vault-cli
and the subcommand, e.g. vault-cli --no-render get-all
) or adding render: false
to the vault-cli configuration yaml file disables rendering and removes the vulnerability. Using the python library, you can use: vault_cli.get_client(render=False)
when creating your client to get a client that will not render templated secrets and thus operates securely.
The product constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Vault-cli | Vault-cli_project | 0.7.0 (including) | 3.0.0 (excluding) |
When a product allows a user’s input to contain code syntax, it might be possible for an attacker to craft the code in such a way that it will alter the intended control flow of the product. Such an alteration could lead to arbitrary code execution. Injection problems encompass a wide variety of issues – all mitigated in very different ways. For this reason, the most effective way to discuss these weaknesses is to note the distinct features which classify them as injection weaknesses. The most important issue to note is that all injection problems share one thing in common – i.e., they allow for the injection of control plane data into the user-controlled data plane. This means that the execution of the process may be altered by sending code in through legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws, involve the use of some further issue to gain execution, injection problems need only for the data to be parsed. The most classic instantiations of this category of weakness are SQL injection and format string vulnerabilities.