CVE Vulnerabilities

CVE-2022-1253

Heap-based Buffer Overflow

Published: Apr 06, 2022 | Modified: Feb 11, 2023
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.5 HIGH
AV:N/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

Heap-based Buffer Overflow in GitHub repository strukturag/libde265 prior to and including 1.0.8. The fix is established in commit 8e89fe0e175d2870c39486fdd09250b230ec10b8 but does not yet belong to an official release.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

Name Vendor Start Version End Version
Libde265 Struktur * 1.0.8 (including)
Libde265 Ubuntu bionic *
Libde265 Ubuntu impish *
Libde265 Ubuntu jammy *
Libde265 Ubuntu kinetic *
Libde265 Ubuntu lunar *
Libde265 Ubuntu trusty *
Libde265 Ubuntu xenial *

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References