CVE Vulnerabilities

CVE-2022-1669

Stack-based Buffer Overflow

Published: May 24, 2022 | Modified: Jun 10, 2022
CVSS 3.x
8.1
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H
CVSS 2.x
5.5 MEDIUM
AV:N/AC:L/Au:S/C:N/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

A buffer overflow vulnerability has been detected in the firewall function of the device management web portal. The device runs a CGI binary (index.cgi) to offer a management web application. Once authenticated with valid credentials in this web portal, a potential attacker could submit any Address value and it would be copied to a second variable with a strcpy vulnerable function without checking its length. Because of this, it is possible to send a long address value to overflow the process stack, controlling the function return address.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Compact_dc-s_basic_firmware Circutor 1.2.17 (including) 1.2.17 (including)

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References