CVE Vulnerabilities

CVE-2022-1941

Improper Validation of Syntactic Correctness of Input

Published: Sep 22, 2022 | Modified: Nov 21, 2024
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
6.5 MODERATE
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
Ubuntu
LOW

A parsing vulnerability for the MessageSet type in the ProtocolBuffers versions prior to and including 3.16.1, 3.17.3, 3.18.2, 3.19.4, 3.20.1 and 3.21.5 for protobuf-cpp, and versions prior to and including 3.16.1, 3.17.3, 3.18.2, 3.19.4, 3.20.1 and 4.21.5 for protobuf-python can lead to out of memory failures. A specially crafted message with multiple key-value per elements creates parsing issues, and can lead to a Denial of Service against services receiving unsanitized input. We recommend upgrading to versions 3.18.3, 3.19.5, 3.20.2, 3.21.6 for protobuf-cpp and 3.18.3, 3.19.5, 3.20.2, 4.21.6 for protobuf-python. Versions for 3.16 and 3.17 are no longer updated.

Weakness

The product receives input that is expected to be well-formed - i.e., to comply with a certain syntax - but it does not validate or incorrectly validates that the input complies with the syntax.

Affected Software

Name Vendor Start Version End Version
Protobuf-cpp Google * 3.18.3 (excluding)
Protobuf-cpp Google 3.19.0 (including) 3.19.5 (excluding)
Protobuf-cpp Google 3.20.0 (including) 3.20.2 (excluding)
Protobuf-cpp Google 3.21.0 (including) 3.21.6 (excluding)
Protobuf-python Google * 3.18.3 (excluding)
Protobuf-python Google 3.19.0 (including) 3.19.5 (excluding)
Protobuf-python Google 3.20.0 (including) 3.20.2 (excluding)
Protobuf-python Google 4.0.0 (including) 4.21.6 (excluding)
Protobuf Ubuntu bionic *
Protobuf Ubuntu esm-infra-legacy/trusty *
Protobuf Ubuntu esm-infra/xenial *
Protobuf Ubuntu focal *
Protobuf Ubuntu jammy *
Protobuf Ubuntu kinetic *
Protobuf Ubuntu trusty *
Protobuf Ubuntu trusty/esm *
Protobuf Ubuntu xenial *

Extended Description

Often, complex inputs are expected to follow a particular syntax, which is either assumed by the input itself, or declared within metadata such as headers. The syntax could be for data exchange formats, markup languages, or even programming languages. When untrusted input is not properly validated for the expected syntax, attackers could cause parsing failures, trigger unexpected errors, or expose latent vulnerabilities that might not be directly exploitable if the input had conformed to the syntax.

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

References