CVE Vulnerabilities

CVE-2022-22178

Stack-based Buffer Overflow

Published: Jan 19, 2022 | Modified: Jan 26, 2022
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu

A Stack-based Buffer Overflow vulnerability in the flow processing daemon (flowd) of Juniper Networks Junos OS on MX Series and SRX series allows an unauthenticated networked attacker to cause a flowd crash and thereby a Denial of Service (DoS). Continued receipt of these specific packets will cause a sustained Denial of Service condition. This issue can be triggered by a specific Session Initiation Protocol (SIP) invite packet if the SIP ALG is enabled. Due to this, the PIC will be rebooted and all traffic that traverses the PIC will be dropped. This issue affects: Juniper Networks Junos OS 20.4 versions prior to 20.4R3-S2; 21.1 versions prior to 21.1R2-S1, 21.1R3; 21.2 versions prior to 21.2R2; 21.3 versions prior to 21.3R2. This issue does not affect Juniper Networks Junos OS versions prior to 20.4R1.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Junos Juniper 20.4-r1 (including) 20.4-r1 (including)
Junos Juniper 20.4-r1-s1 (including) 20.4-r1-s1 (including)
Junos Juniper 20.4-r2 (including) 20.4-r2 (including)
Junos Juniper 20.4-r2-s1 (including) 20.4-r2-s1 (including)
Junos Juniper 20.4-r2-s2 (including) 20.4-r2-s2 (including)
Junos Juniper 20.4-r3 (including) 20.4-r3 (including)
Junos Juniper 20.4-r3-s1 (including) 20.4-r3-s1 (including)
Junos Juniper 21.1-r1 (including) 21.1-r1 (including)
Junos Juniper 21.1-r1-s1 (including) 21.1-r1-s1 (including)
Junos Juniper 21.1-r2 (including) 21.1-r2 (including)
Junos Juniper 21.2-r1 (including) 21.2-r1 (including)
Junos Juniper 21.2-r1-s1 (including) 21.2-r1-s1 (including)
Junos Juniper 21.3-r1 (including) 21.3-r1 (including)

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References