CVE Vulnerabilities

CVE-2022-2326

Incorrect Authorization

Published: Aug 05, 2022 | Modified: Aug 11, 2022
CVSS 3.x
8.1
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

An issue has been discovered in GitLab CE/EE affecting all versions before 15.0.5, all versions starting from 15.1 before 15.1.4, all versions starting from 15.2 before 15.2.1. It may be possible to gain access to a private project through an email invite by using other users email address as an unverified secondary email.

Weakness

The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. This allows attackers to bypass intended access restrictions.

Affected Software

Name Vendor Start Version End Version
Gitlab Gitlab * 15.0.5 (excluding)
Gitlab Gitlab 15.1.0 (including) 15.1.4 (excluding)
Gitlab Gitlab 15.2 (including) 15.2 (including)
Gitlab Ubuntu esm-apps/xenial *
Gitlab Ubuntu xenial *

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user’s privileges and any permissions or other access-control specifications that apply to the resource. When access control checks are incorrectly applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.

Potential Mitigations

  • Divide the product into anonymous, normal, privileged, and administrative areas. Reduce the attack surface by carefully mapping roles with data and functionality. Use role-based access control (RBAC) [REF-229] to enforce the roles at the appropriate boundaries.
  • Note that this approach may not protect against horizontal authorization, i.e., it will not protect a user from attacking others with the same role.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, consider using authorization frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI Access Control feature [REF-45].
  • For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any unauthorized functionality or information by simply requesting direct access to that page.
  • One way to do this is to ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page.

References