Versions <=8.5.1
of jsonwebtoken
library could be misconfigured so that legacy, insecure key types are used for signature verification. For example, DSA keys could be used with the RS256 algorithm. You are affected if you are using an algorithm and a key type other than a combination listed in the GitHub Security Advisory as unaffected. This issue has been fixed, please update to version 9.0.0. This version validates for asymmetric key type and algorithm combinations. Please refer to the above mentioned algorithm / key type combinations for the valid secure configuration. After updating to version 9.0.0, if you still intend to continue with signing or verifying tokens using invalid key type/algorithm value combinations, you’ll need to set the allowInvalidAsymmetricKeyTypes
option to true
in the sign()
and/or verify()
functions.
The product uses a broken or risky cryptographic algorithm or protocol.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Jsonwebtoken | Auth0 | * | 8.5.1 (including) |
RHODF-4.12-RHEL-8 | RedHat | odf4/mcg-core-rhel8:v4.12.3-4 | * |
Cryptographic algorithms are the methods by which data is scrambled to prevent observation or influence by unauthorized actors. Insecure cryptography can be exploited to expose sensitive information, modify data in unexpected ways, spoof identities of other users or devices, or other impacts. It is very difficult to produce a secure algorithm, and even high-profile algorithms by accomplished cryptographic experts have been broken. Well-known techniques exist to break or weaken various kinds of cryptography. Accordingly, there are a small number of well-understood and heavily studied algorithms that should be used by most products. Using a non-standard or known-insecure algorithm is dangerous because a determined adversary may be able to break the algorithm and compromise whatever data has been protected. Since the state of cryptography advances so rapidly, it is common for an algorithm to be considered “unsafe” even if it was once thought to be strong. This can happen when new attacks are discovered, or if computing power increases so much that the cryptographic algorithm no longer provides the amount of protection that was originally thought. For a number of reasons, this weakness is even more challenging to manage with hardware deployment of cryptographic algorithms as opposed to software implementation. First, if a flaw is discovered with hardware-implemented cryptography, the flaw cannot be fixed in most cases without a recall of the product, because hardware is not easily replaceable like software. Second, because the hardware product is expected to work for years, the adversary’s computing power will only increase over time.