Redis is an in-memory database that persists on disk. By exploiting weaknesses in the Lua script execution environment, an attacker with access to Redis prior to version 7.0.0 or 6.2.7 can inject Lua code that will execute with the (potentially higher) privileges of another Redis user. The Lua script execution environment in Redis provides some measures that prevent a script from creating side effects that persist and can affect the execution of the same, or different script, at a later time. Several weaknesses of these measures have been publicly known for a long time, but they had no security impact as the Redis security model did not endorse the concept of users or privileges. With the introduction of ACLs in Redis 6.0, these weaknesses can be exploited by a less privileged users to inject Lua code that will execute at a later time, when a privileged user executes a Lua script. The problem is fixed in Redis versions 7.0.0 and 6.2.7. An additional workaround to mitigate this problem without patching the redis-server executable, if Lua scripting is not being used, is to block access to SCRIPT LOAD
and EVAL
commands using ACL rules.
The product constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Redis | Redis | * | 6.2.7 (excluding) |
Redis | Redis | 7.0-rc1 (including) | 7.0-rc1 (including) |
Redis | Redis | 7.0-rc2 (including) | 7.0-rc2 (including) |
Redis | Redis | 7.0-rc3 (including) | 7.0-rc3 (including) |
Red Hat Enterprise Linux 8 | RedHat | redis:6-8070020220509142426.3b9f49c4 | * |
Red Hat Enterprise Linux 9 | RedHat | redis-0:6.2.7-1.el9 | * |
Redis | Ubuntu | bionic | * |
Redis | Ubuntu | impish | * |
Redis | Ubuntu | kinetic | * |
Redis | Ubuntu | lunar | * |
When a product allows a user’s input to contain code syntax, it might be possible for an attacker to craft the code in such a way that it will alter the intended control flow of the product. Such an alteration could lead to arbitrary code execution. Injection problems encompass a wide variety of issues – all mitigated in very different ways. For this reason, the most effective way to discuss these weaknesses is to note the distinct features which classify them as injection weaknesses. The most important issue to note is that all injection problems share one thing in common – i.e., they allow for the injection of control plane data into the user-controlled data plane. This means that the execution of the process may be altered by sending code in through legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws, involve the use of some further issue to gain execution, injection problems need only for the data to be parsed. The most classic instantiations of this category of weakness are SQL injection and format string vulnerabilities.