CVE Vulnerabilities


Use After Free

Published: Mar 31, 2022 | Modified: Apr 08, 2022
CVSS 3.x
CVSS 2.x

Wasmtime is a standalone JIT-style runtime for WebAssembly, using Cranelift. There is a use after free vulnerability in Wasmtime when both running Wasm that uses externrefs and enabling epoch interruption in Wasmtime. If you are not explicitly enabling epoch interruption (it is disabled by default) then you are not affected. If you are explicitly disabling the Wasm reference types proposal (it is enabled by default) then you are also not affected. The use after free is caused by Cranelift failing to emit stack maps when there are safepoints inside cold blocks. Cold blocks occur when epoch interruption is enabled. Cold blocks are emitted at the end of compiled functions, and change the order blocks are emitted versus defined. This reordering accidentally caused Cranelift to skip emitting some stack maps because it expected to emit the stack maps in block definition order, rather than block emission order. When Wasmtime would eventually collect garbage, it would fail to find live references on the stack because of the missing stack maps, think that they were unreferenced garbage, and therefore reclaim them. Then after the collection ended, the Wasm code could use the reclaimed-too-early references, which is a use after free. Patches have been released in versions 0.34.2 and 0.35.2, which fix the vulnerability. All Wasmtime users are recommended to upgrade to these patched versions. If upgrading is not an option for you at this time, you can avoid the vulnerability by either: disabling the Wasm reference types proposal, config.wasm_reference_types(false); or by disabling epoch interruption if you were previously enabling it. config.epoch_interruption(false).


Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.

Affected Software

Name Vendor Start Version End Version
Wasmtime Bytecodealliance 0.34.0 (including) 0.34.2 (excluding)
Wasmtime Bytecodealliance 0.35.0 (including) 0.35.2 (excluding)
Firefox Ubuntu bionic *
Firefox Ubuntu devel *
Firefox Ubuntu focal *
Firefox Ubuntu impish *
Firefox Ubuntu jammy *
Firefox Ubuntu kinetic *
Firefox Ubuntu lunar *
Firefox Ubuntu mantic *
Firefox Ubuntu noble *
Firefox Ubuntu trusty *
Firefox Ubuntu xenial *
Mozjs38 Ubuntu bionic *
Mozjs52 Ubuntu bionic *
Mozjs78 Ubuntu impish *
Mozjs78 Ubuntu kinetic *
Mozjs78 Ubuntu lunar *
Thunderbird Ubuntu bionic *
Thunderbird Ubuntu devel *
Thunderbird Ubuntu focal *
Thunderbird Ubuntu impish *
Thunderbird Ubuntu jammy *
Thunderbird Ubuntu kinetic *
Thunderbird Ubuntu lunar *
Thunderbird Ubuntu mantic *
Thunderbird Ubuntu noble *
Thunderbird Ubuntu trusty *
Thunderbird Ubuntu xenial *

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system’s reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:

In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process. If the newly allocated data happens to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Potential Mitigations