Use of a hard-coded cryptographic key pair by the telnetd_startup service allows an attacker on the local area network to obtain a root shell on the device over telnet. The builds of telnetd_startup included in the version 22.5.9.163 of the K2 firmware, and version 32.1.15.93 of the K3C firmware (possibly amongst many other releases) included both the private and public RSA keys. The remaining versions cited here redacted the private key, but left the public key unchanged. An attacker in possession of the leaked private key may, through a scripted exchange of UDP packets, instruct telnetd_startup to spawn an unauthenticated telnet shell as root, by means of which they can then obtain complete control of the device. A consequence of the limited availablility of firmware images for testing is that models and versions not listed here may share this vulnerability.
Weakness
The product contains hard-coded credentials, such as a password or cryptographic key.
Affected Software
Name |
Vendor |
Start Version |
End Version |
K2_firmware |
Phicomm |
* |
22.5.9.163 (including) |
Extended Description
There are two main variations:
Potential Mitigations
- For outbound authentication: store passwords, keys, and other credentials outside of the code in a strongly-protected, encrypted configuration file or database that is protected from access by all outsiders, including other local users on the same system. Properly protect the key (CWE-320). If you cannot use encryption to protect the file, then make sure that the permissions are as restrictive as possible [REF-7].
- In Windows environments, the Encrypted File System (EFS) may provide some protection.
- For inbound authentication using passwords: apply strong one-way hashes to passwords and store those hashes in a configuration file or database with appropriate access control. That way, theft of the file/database still requires the attacker to try to crack the password. When handling an incoming password during authentication, take the hash of the password and compare it to the saved hash.
- Use randomly assigned salts for each separate hash that is generated. This increases the amount of computation that an attacker needs to conduct a brute-force attack, possibly limiting the effectiveness of the rainbow table method.
- For front-end to back-end connections: Three solutions are possible, although none are complete.
References