CVE Vulnerabilities

CVE-2022-30313

Missing Authentication for Critical Function

Published: Jul 28, 2022 | Modified: Feb 13, 2024
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

Honeywell Experion PKS Safety Manager through 2022-05-06 has Missing Authentication for a Critical Function. According to FSCT-2022-0051, there is a Honeywell Experion PKS Safety Manager multiple proprietary protocols with unauthenticated functionality issue. The affected components are characterized as: Honeywell Experion TCP (51000/TCP), Safety Builder (51010/TCP). The potential impact is: Manipulate controller state, Manipulate controller configuration, Manipulate controller logic, Manipulate controller files, Manipulate IO. The Honeywell Experion PKS Distributed Control System (DCS) Safety Manager utilizes several proprietary protocols for a wide variety of functionality, including process data acquisition, controller steering and configuration management. These protocols include: Experion TCP (51000/TCP) and Safety Builder (51010/TCP). None of these protocols have any authentication features, allowing any attacker capable of communicating with the ports in question to invoke (a subset of) desired functionality. There is no authentication functionality on the protocols in question. An attacker capable of invoking the protocols functionalities could achieve a wide range of adverse impacts, including (but not limited to), the following: for Experion TCP (51000/TCP): Issue IO manipulation commands, Issue file read/write commands; and for Safety Builder (51010/TCP): Issue controller start/stop commands, Issue logic download/upload commands, Issue file read commands, Issue system time change commands. A mitigating factor with regards to some, but not all, of the above functionality is that these require the Safety Manager physical keyswitch to be in the right position.

Weakness

The product does not perform any authentication for functionality that requires a provable user identity or consumes a significant amount of resources.

Affected Software

Name Vendor Start Version End Version
Safety_manager_firmware Honeywell - (including) - (including)

Extended Description

As data is migrated to the cloud, if access does not require authentication, it can be easier for attackers to access the data from anywhere on the Internet.

Potential Mitigations

  • Divide the software into anonymous, normal, privileged, and administrative areas. Identify which of these areas require a proven user identity, and use a centralized authentication capability.
  • Identify all potential communication channels, or other means of interaction with the software, to ensure that all channels are appropriately protected. Developers sometimes perform authentication at the primary channel, but open up a secondary channel that is assumed to be private. For example, a login mechanism may be listening on one network port, but after successful authentication, it may open up a second port where it waits for the connection, but avoids authentication because it assumes that only the authenticated party will connect to the port.
  • In general, if the software or protocol allows a single session or user state to persist across multiple connections or channels, authentication and appropriate credential management need to be used throughout.
  • Where possible, avoid implementing custom authentication routines and consider using authentication capabilities as provided by the surrounding framework, operating system, or environment. These may make it easier to provide a clear separation between authentication tasks and authorization tasks.
  • In environments such as the World Wide Web, the line between authentication and authorization is sometimes blurred. If custom authentication routines are required instead of those provided by the server, then these routines must be applied to every single page, since these pages could be requested directly.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, consider using libraries with authentication capabilities such as OpenSSL or the ESAPI Authenticator [REF-45].

References