Argo CD is a declarative continuous deployment for Kubernetes. Argo CD versions v0.7.0 and later are vulnerable to an uncontrolled memory consumption bug, allowing an authorized malicious user to crash the repo-server service, resulting in a Denial of Service. The attacker must be an authenticated Argo CD user authorized to deploy Applications from a repository which contains (or can be made to contain) a large file. The fix for this vulnerability is available in versions 2.3.5, 2.2.10, 2.1.16, and later. There are no known workarounds. Users are recommended to upgrade.
The product does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Argo_cd | Argoproj | 0.7.0 (including) | 2.1.16 (excluding) |
Argo_cd | Argoproj | 2.2.0 (including) | 2.2.10 (excluding) |
Argo_cd | Argoproj | 2.3.0 (including) | 2.3.5 (excluding) |
Argo_cd | Argoproj | 2.4.0 (including) | 2.4.1 (excluding) |
Red Hat OpenShift GitOps 1.3 | RedHat | openshift-gitops-1/argocd-rhel8:v1.3.12-1 | * |
Red Hat OpenShift GitOps 1.3 | RedHat | openshift-gitops-1/argocd-rhel8:v1.3.11-4 | * |
Red Hat OpenShift GitOps 1.4 | RedHat | openshift-gitops-1/argocd-rhel8:v1.4.9-3 | * |
Red Hat OpenShift GitOps 1.5 | RedHat | openshift-gitops-1/argocd-rhel8:v1.5.3-2 | * |
Limited resources include memory, file system storage, database connection pool entries, and CPU. If an attacker can trigger the allocation of these limited resources, but the number or size of the resources is not controlled, then the attacker could cause a denial of service that consumes all available resources. This would prevent valid users from accessing the product, and it could potentially have an impact on the surrounding environment. For example, a memory exhaustion attack against an application could slow down the application as well as its host operating system. There are at least three distinct scenarios which can commonly lead to resource exhaustion:
Resource exhaustion problems are often result due to an incorrect implementation of the following situations:
Mitigation of resource exhaustion attacks requires that the target system either:
The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, they may be able to prevent the user from accessing the server in question.
The second solution is simply difficult to effectively institute – and even when properly done, it does not provide a full solution. It simply makes the attack require more resources on the part of the attacker.