CVE Vulnerabilities

CVE-2022-31073

Uncontrolled Resource Consumption

Published: Jul 11, 2022 | Modified: Jul 16, 2022
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu

KubeEdge is an open source system for extending native containerized application orchestration capabilities to hosts at Edge. Prior to versions 1.11.1, 1.10.2, and 1.9.4, the ServiceBus server on the edge side may be susceptible to a DoS attack if an HTTP request containing a very large Body is sent to it. It is possible for the node to be exhausted of memory. The consequence of the exhaustion is that other services on the node, e.g. other containers, will be unable to allocate memory and thus causing a denial of service. Malicious apps accidentally pulled by users on the host and have the access to send HTTP requests to localhost may make an attack. It will be affected only when users enable the ServiceBus module in the config file edgecore.yaml. This bug has been fixed in Kubeedge 1.11.1, 1.10.2, and 1.9.4. As a workaround, disable the ServiceBus module in the config file edgecore.yaml.

Weakness

The product does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources.

Affected Software

Name Vendor Start Version End Version
Kubeedge Linuxfoundation * 1.9.4 (excluding)
Kubeedge Linuxfoundation 1.10.0 (including) 1.10.2 (excluding)
Kubeedge Linuxfoundation 1.11.0 (including) 1.11.1 (excluding)

Extended Description

Limited resources include memory, file system storage, database connection pool entries, and CPU. If an attacker can trigger the allocation of these limited resources, but the number or size of the resources is not controlled, then the attacker could cause a denial of service that consumes all available resources. This would prevent valid users from accessing the product, and it could potentially have an impact on the surrounding environment. For example, a memory exhaustion attack against an application could slow down the application as well as its host operating system. There are at least three distinct scenarios which can commonly lead to resource exhaustion:

Resource exhaustion problems are often result due to an incorrect implementation of the following situations:

Potential Mitigations

  • Mitigation of resource exhaustion attacks requires that the target system either:

  • The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, they may be able to prevent the user from accessing the server in question.

  • The second solution is simply difficult to effectively institute – and even when properly done, it does not provide a full solution. It simply makes the attack require more resources on the part of the attacker.

References