CVE Vulnerabilities

CVE-2022-33741

Exposure of Sensitive Information to an Unauthorized Actor

Published: Jul 05, 2022 | Modified: Nov 07, 2023
CVSS 3.x
7.1
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H
CVSS 2.x
3.6 LOW
AV:L/AC:L/Au:N/C:P/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends dont zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesnt allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742).

Weakness

The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.

Affected Software

Name Vendor Start Version End Version
Fedora Fedoraproject 35 (including) 35 (including)
Fedora Fedoraproject 36 (including) 36 (including)

Extended Description

There are many different kinds of mistakes that introduce information exposures. The severity of the error can range widely, depending on the context in which the product operates, the type of sensitive information that is revealed, and the benefits it may provide to an attacker. Some kinds of sensitive information include:

Information might be sensitive to different parties, each of which may have their own expectations for whether the information should be protected. These parties include:

Information exposures can occur in different ways:

It is common practice to describe any loss of confidentiality as an “information exposure,” but this can lead to overuse of CWE-200 in CWE mapping. From the CWE perspective, loss of confidentiality is a technical impact that can arise from dozens of different weaknesses, such as insecure file permissions or out-of-bounds read. CWE-200 and its lower-level descendants are intended to cover the mistakes that occur in behaviors that explicitly manage, store, transfer, or cleanse sensitive information.

Potential Mitigations

  • Compartmentalize the system to have “safe” areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
  • Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

References