TensorFlow is an open source platform for machine learning. The implementation of SobolSampleOp is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by assuming input(0)
, input(1)
, and input(2)
to be scalar. This issue has been patched in GitHub commit c65c67f88ad770662e8f191269a907bf2b94b1bf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
The product contains an assert() or similar statement that can be triggered by an attacker, which leads to an application exit or other behavior that is more severe than necessary.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Tensorflow | 2.7.0 (including) | 2.7.2 (excluding) | |
Tensorflow | 2.8.0 (including) | 2.8.1 (excluding) | |
Tensorflow | 2.9.0 (including) | 2.9.1 (excluding) | |
Tensorflow | 2.10-rc0 (including) | 2.10-rc0 (including) | |
Tensorflow | 2.10-rc1 (including) | 2.10-rc1 (including) | |
Tensorflow | 2.10-rc2 (including) | 2.10-rc2 (including) | |
Tensorflow | 2.10-rc3 (including) | 2.10-rc3 (including) |
While assertion is good for catching logic errors and reducing the chances of reaching more serious vulnerability conditions, it can still lead to a denial of service. For example, if a server handles multiple simultaneous connections, and an assert() occurs in one single connection that causes all other connections to be dropped, this is a reachable assertion that leads to a denial of service.