Azure RTOS USBx is a USB host, device, and on-the-go (OTG) embedded stack, fully integrated with Azure RTOS ThreadX and available for all Azure RTOS ThreadX–supported processors. Azure RTOS USBX implementation of host support for USB CDC ECM includes an integer underflow and a buffer overflow in the _ux_host_class_cdc_ecm_mac_address_get
function which may be potentially exploited to achieve remote code execution or denial of service. Setting mac address string descriptor length to a 0
or 1
allows an attacker to introduce an integer underflow followed (string_length) by a buffer overflow of the cdc_ecm -> ux_host_class_cdc_ecm_node_id
array. This may allow one to redirect the code execution flow or introduce a denial of service. The fix has been included in USBX release 6.1.12. Improved mac address string descriptor length validation to check for unexpectedly small values may be used as a workaround.
Weakness
A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).
Affected Software
Name |
Vendor |
Start Version |
End Version |
Azure_rtos_usbx |
Microsoft |
* |
6.1.11 (excluding) |
Potential Mitigations
- Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
- D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
- Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
- Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
- For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
References