CVE Vulnerabilities

CVE-2022-36078

Improper Validation of Specified Quantity in Input

Published: Sep 02, 2022 | Modified: Jul 21, 2023
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

Binary provides encoding/decoding in Borsh and other formats. The vulnerability is a memory allocation vulnerability that can be exploited to allocate slices in memory with (arbitrary) excessive size value, which can either exhaust available memory or crash the whole program. When using github.com/gagliardetto/binary to parse unchecked (or wrong type of) data from untrusted sources of input (e.g. the blockchain) into slices, its possible to allocate memory with excessive size. When dec.Decode(&val) method is used to parse data into a structure that is or contains slices of values, the length of the slice was previously read directly from the data itself without any checks on the size of it, and then a slice was allocated. This could lead to an overflow and an allocation of memory with excessive size value. Users should upgrade to v0.7.1 or higher. A workaround is not to rely on the dec.Decode(&val) function to parse the data, but to use a custom UnmarshalWithDecoder() method that reads and checks the length of any slice.

Weakness

The product receives input that is expected to specify a quantity (such as size or length), but it does not validate or incorrectly validates that the quantity has the required properties.

Affected Software

Name Vendor Start Version End Version
Binary Binary_project * 0.7.1 (excluding)

Extended Description

Specified quantities include size, length, frequency, price, rate, number of operations, time, and others. Code may rely on specified quantities to allocate resources, perform calculations, control iteration, etc. When the quantity is not properly validated, then attackers can specify malicious quantities to cause excessive resource allocation, trigger unexpected failures, enable buffer overflows, etc.

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

References