Wasmtime is a standalone runtime for WebAssembly. Prior to version 2.0.2, there is a bug in Wasmtimes implementation of its pooling instance allocator when the allocator is configured to give WebAssembly instances a maximum of zero pages of memory. In this configuration, the virtual memory mapping for WebAssembly memories did not meet the compiler-required configuration requirements for safely executing WebAssembly modules. Wasmtimes default settings require virtual memory page faults to indicate that wasm reads/writes are out-of-bounds, but the pooling allocators configuration would not create an appropriate virtual memory mapping for this meaning out of bounds reads/writes can successfully read/write memory unrelated to the wasm sandbox within range of the base address of the memory mapping created by the pooling allocator. This bug is not applicable with the default settings of the wasmtime
crate. This bug can only be triggered by setting InstanceLimits::memory_pages
to zero. This is expected to be a very rare configuration since this means that wasm modules cannot allocate any pages of linear memory. All wasm modules produced by all current toolchains are highly likely to use linear memory, so its expected to be unlikely that this configuration is set to zero by any production embedding of Wasmtime. This bug has been patched and users should upgrade to Wasmtime 2.0.2. This bug can be worked around by increasing the memory_pages
allotment when configuring the pooling allocator to a value greater than zero. If an embedding wishes to still prevent memory from actually being used then the Store::limiter
method can be used to dynamically disallow growth of memory beyond 0 bytes large. Note that the default memory_pages
value is greater than zero.
The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Wasmtime | Bytecodealliance | * | 1.0.2 (excluding) |
Wasmtime | Bytecodealliance | 2.0.0 (including) | 2.0.2 (excluding) |
Firefox | Ubuntu | bionic | * |
Firefox | Ubuntu | focal | * |
Firefox | Ubuntu | trusty | * |
Firefox | Ubuntu | xenial | * |
Mozjs38 | Ubuntu | bionic | * |
Mozjs38 | Ubuntu | esm-apps/bionic | * |
Mozjs38 | Ubuntu | upstream | * |
Mozjs52 | Ubuntu | bionic | * |
Mozjs52 | Ubuntu | esm-apps/focal | * |
Mozjs52 | Ubuntu | esm-infra/bionic | * |
Mozjs52 | Ubuntu | focal | * |
Mozjs52 | Ubuntu | upstream | * |
Mozjs68 | Ubuntu | focal | * |
Mozjs68 | Ubuntu | upstream | * |
Mozjs78 | Ubuntu | esm-apps/jammy | * |
Mozjs78 | Ubuntu | jammy | * |
Mozjs78 | Ubuntu | kinetic | * |
Mozjs78 | Ubuntu | lunar | * |
Mozjs78 | Ubuntu | upstream | * |
Mozjs91 | Ubuntu | jammy | * |
Mozjs91 | Ubuntu | upstream | * |
Thunderbird | Ubuntu | bionic | * |
Thunderbird | Ubuntu | devel | * |
Thunderbird | Ubuntu | focal | * |
Thunderbird | Ubuntu | jammy | * |
Thunderbird | Ubuntu | kinetic | * |
Thunderbird | Ubuntu | lunar | * |
Thunderbird | Ubuntu | mantic | * |
Thunderbird | Ubuntu | noble | * |
Thunderbird | Ubuntu | trusty | * |
Thunderbird | Ubuntu | xenial | * |
Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Consider adhering to the following rules when allocating and managing an application’s memory:
Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].