CVE Vulnerabilities

CVE-2022-41873

Out-of-bounds Read

Published: Nov 11, 2022 | Modified: Nov 18, 2022
CVSS 3.x
5.4
MEDIUM
Source:
NVD
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to 4.9 are vulnerable to an Out-of-bounds read. While processing the L2CAP protocol, the Bluetooth Low Energy stack of Contiki-NG needs to map an incoming channel ID to its metadata structure. While looking up the corresponding channel structure in get_channel_for_cid (in os/net/mac/ble/ble-l2cap.c), a bounds check is performed on the incoming channel ID, which is meant to ensure that the channel ID does not exceed the maximum number of supported channels.However, an integer truncation issue leads to only the lowest byte of the channel ID to be checked, which leads to an incomplete out-of-bounds check. A crafted channel ID leads to out-of-bounds memory to be read and written with attacker-controlled data. The vulnerability has been patched in the develop branch of Contiki-NG, and will be included in release 4.9. As a workaround, Users can apply the patch in Contiki-NG pull request 2081 on GitHub.

Weakness

The product reads data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Contiki-ng Contiki-ng * 4.9 (excluding)

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.

References