CVE Vulnerabilities

CVE-2022-42254

Improper Validation of Array Index

Published: Dec 30, 2022 | Modified: Oct 19, 2023
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an out-of-bounds array access may lead to denial of service, data tampering, or information disclosure.

Weakness

The product uses untrusted input when calculating or using an array index, but the product does not validate or incorrectly validates the index to ensure the index references a valid position within the array.

Affected Software

Name Vendor Start Version End Version
Virtual_gpu Nvidia * 11.11 (excluding)
Virtual_gpu Nvidia 12.0 (including) 13.6 (excluding)
Virtual_gpu Nvidia 14.0 (including) 14.4 (excluding)
Nvidia-graphics-drivers-304 Ubuntu esm-infra/xenial *
Nvidia-graphics-drivers-304 Ubuntu trusty *
Nvidia-graphics-drivers-304 Ubuntu xenial *
Nvidia-graphics-drivers-304-updates Ubuntu trusty *
Nvidia-graphics-drivers-304-updates Ubuntu xenial *
Nvidia-graphics-drivers-340 Ubuntu bionic *
Nvidia-graphics-drivers-340 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-340 Ubuntu esm-infra/xenial *
Nvidia-graphics-drivers-340 Ubuntu focal *
Nvidia-graphics-drivers-340 Ubuntu trusty *
Nvidia-graphics-drivers-340 Ubuntu xenial *
Nvidia-graphics-drivers-340-updates Ubuntu trusty *
Nvidia-graphics-drivers-352 Ubuntu trusty *
Nvidia-graphics-drivers-352-updates Ubuntu trusty *
Nvidia-graphics-drivers-367 Ubuntu trusty *
Nvidia-graphics-drivers-375 Ubuntu trusty *
Nvidia-graphics-drivers-384 Ubuntu trusty *
Nvidia-graphics-drivers-384 Ubuntu xenial *
Nvidia-graphics-drivers-418-server Ubuntu bionic *
Nvidia-graphics-drivers-418-server Ubuntu esm-apps/bionic *
Nvidia-graphics-drivers-418-server Ubuntu esm-apps/focal *
Nvidia-graphics-drivers-418-server Ubuntu focal *
Nvidia-graphics-drivers-418-server Ubuntu jammy *
Nvidia-graphics-drivers-430 Ubuntu bionic *
Nvidia-graphics-drivers-430 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-430 Ubuntu focal *
Nvidia-graphics-drivers-430 Ubuntu jammy *
Nvidia-graphics-drivers-430 Ubuntu kinetic *
Nvidia-graphics-drivers-430 Ubuntu lunar *
Nvidia-graphics-drivers-430 Ubuntu mantic *
Nvidia-graphics-drivers-435 Ubuntu bionic *
Nvidia-graphics-drivers-435 Ubuntu esm-apps/jammy *
Nvidia-graphics-drivers-435 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-435 Ubuntu focal *
Nvidia-graphics-drivers-435 Ubuntu jammy *
Nvidia-graphics-drivers-435 Ubuntu kinetic *
Nvidia-graphics-drivers-435 Ubuntu lunar *
Nvidia-graphics-drivers-435 Ubuntu mantic *
Nvidia-graphics-drivers-440 Ubuntu bionic *
Nvidia-graphics-drivers-440 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-440 Ubuntu focal *
Nvidia-graphics-drivers-440 Ubuntu jammy *
Nvidia-graphics-drivers-440 Ubuntu kinetic *
Nvidia-graphics-drivers-440 Ubuntu lunar *
Nvidia-graphics-drivers-440 Ubuntu mantic *
Nvidia-graphics-drivers-440-server Ubuntu bionic *
Nvidia-graphics-drivers-440-server Ubuntu esm-apps/bionic *
Nvidia-graphics-drivers-440-server Ubuntu esm-apps/focal *
Nvidia-graphics-drivers-440-server Ubuntu esm-apps/jammy *
Nvidia-graphics-drivers-440-server Ubuntu focal *
Nvidia-graphics-drivers-440-server Ubuntu jammy *
Nvidia-graphics-drivers-440-server Ubuntu kinetic *
Nvidia-graphics-drivers-440-server Ubuntu lunar *
Nvidia-graphics-drivers-450 Ubuntu bionic *
Nvidia-graphics-drivers-450 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-450 Ubuntu focal *
Nvidia-graphics-drivers-450 Ubuntu jammy *
Nvidia-graphics-drivers-450 Ubuntu kinetic *
Nvidia-graphics-drivers-450 Ubuntu lunar *
Nvidia-graphics-drivers-450 Ubuntu mantic *
Nvidia-graphics-drivers-450-server Ubuntu bionic *
Nvidia-graphics-drivers-450-server Ubuntu focal *
Nvidia-graphics-drivers-450-server Ubuntu jammy *
Nvidia-graphics-drivers-450-server Ubuntu kinetic *
Nvidia-graphics-drivers-450-server Ubuntu lunar *
Nvidia-graphics-drivers-450-server Ubuntu upstream *
Nvidia-graphics-drivers-455 Ubuntu bionic *
Nvidia-graphics-drivers-455 Ubuntu esm-apps/bionic *
Nvidia-graphics-drivers-455 Ubuntu esm-apps/focal *
Nvidia-graphics-drivers-455 Ubuntu focal *
Nvidia-graphics-drivers-455 Ubuntu jammy *
Nvidia-graphics-drivers-455 Ubuntu kinetic *
Nvidia-graphics-drivers-455 Ubuntu lunar *
Nvidia-graphics-drivers-455 Ubuntu mantic *
Nvidia-graphics-drivers-460 Ubuntu bionic *
Nvidia-graphics-drivers-460 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-460 Ubuntu focal *
Nvidia-graphics-drivers-460 Ubuntu jammy *
Nvidia-graphics-drivers-460 Ubuntu kinetic *
Nvidia-graphics-drivers-460 Ubuntu lunar *
Nvidia-graphics-drivers-460 Ubuntu mantic *
Nvidia-graphics-drivers-460-server Ubuntu bionic *
Nvidia-graphics-drivers-460-server Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-460-server Ubuntu focal *
Nvidia-graphics-drivers-470 Ubuntu bionic *
Nvidia-graphics-drivers-470 Ubuntu focal *
Nvidia-graphics-drivers-470 Ubuntu jammy *
Nvidia-graphics-drivers-470 Ubuntu kinetic *
Nvidia-graphics-drivers-470 Ubuntu lunar *
Nvidia-graphics-drivers-470 Ubuntu mantic *
Nvidia-graphics-drivers-470 Ubuntu noble *
Nvidia-graphics-drivers-470 Ubuntu upstream *
Nvidia-graphics-drivers-470-server Ubuntu bionic *
Nvidia-graphics-drivers-470-server Ubuntu focal *
Nvidia-graphics-drivers-470-server Ubuntu jammy *
Nvidia-graphics-drivers-470-server Ubuntu kinetic *
Nvidia-graphics-drivers-470-server Ubuntu lunar *
Nvidia-graphics-drivers-470-server Ubuntu mantic *
Nvidia-graphics-drivers-470-server Ubuntu noble *
Nvidia-graphics-drivers-470-server Ubuntu upstream *
Nvidia-graphics-drivers-510 Ubuntu bionic *
Nvidia-graphics-drivers-510 Ubuntu focal *
Nvidia-graphics-drivers-510 Ubuntu jammy *
Nvidia-graphics-drivers-510 Ubuntu kinetic *
Nvidia-graphics-drivers-510 Ubuntu lunar *
Nvidia-graphics-drivers-510 Ubuntu mantic *
Nvidia-graphics-drivers-510 Ubuntu upstream *
Nvidia-graphics-drivers-510-server Ubuntu upstream *
Nvidia-graphics-drivers-515 Ubuntu bionic *
Nvidia-graphics-drivers-515 Ubuntu focal *
Nvidia-graphics-drivers-515 Ubuntu jammy *
Nvidia-graphics-drivers-515 Ubuntu kinetic *
Nvidia-graphics-drivers-515 Ubuntu lunar *
Nvidia-graphics-drivers-515 Ubuntu mantic *
Nvidia-graphics-drivers-515 Ubuntu upstream *
Nvidia-graphics-drivers-515-server Ubuntu bionic *
Nvidia-graphics-drivers-515-server Ubuntu focal *
Nvidia-graphics-drivers-515-server Ubuntu jammy *
Nvidia-graphics-drivers-515-server Ubuntu kinetic *
Nvidia-graphics-drivers-515-server Ubuntu lunar *
Nvidia-graphics-drivers-515-server Ubuntu upstream *

Potential Mitigations

  • For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
  • Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, Ada allows the programmer to constrain the values of a variable and languages such as Java and Ruby will allow the programmer to handle exceptions when an out-of-bounds index is accessed.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • When accessing a user-controlled array index, use a stringent range of values that are within the target array. Make sure that you do not allow negative values to be used. That is, verify the minimum as well as the maximum of the range of acceptable values.
  • Run the code in a “jail” or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.
  • OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.
  • This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.
  • Be careful to avoid CWE-243 and other weaknesses related to jails.

References