CVE Vulnerabilities

CVE-2022-42261

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Published: Dec 30, 2022 | Modified: Nov 21, 2024
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where an input index is not validated, which may lead to buffer overrun, which in turn may cause data tampering, information disclosure, or denial of service.

Weakness

The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow.

Affected Software

Name Vendor Start Version End Version
Virtual_gpu Nvidia * 11.11 (excluding)
Virtual_gpu Nvidia 12.0 (including) 13.6 (excluding)
Virtual_gpu Nvidia 14.0 (including) 14.4 (excluding)
Nvidia-graphics-drivers-304 Ubuntu esm-infra/xenial *
Nvidia-graphics-drivers-304 Ubuntu trusty *
Nvidia-graphics-drivers-304 Ubuntu xenial *
Nvidia-graphics-drivers-304-updates Ubuntu trusty *
Nvidia-graphics-drivers-304-updates Ubuntu xenial *
Nvidia-graphics-drivers-340 Ubuntu bionic *
Nvidia-graphics-drivers-340 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-340 Ubuntu esm-infra/xenial *
Nvidia-graphics-drivers-340 Ubuntu focal *
Nvidia-graphics-drivers-340 Ubuntu trusty *
Nvidia-graphics-drivers-340 Ubuntu xenial *
Nvidia-graphics-drivers-340-updates Ubuntu trusty *
Nvidia-graphics-drivers-352 Ubuntu trusty *
Nvidia-graphics-drivers-352-updates Ubuntu trusty *
Nvidia-graphics-drivers-367 Ubuntu trusty *
Nvidia-graphics-drivers-375 Ubuntu trusty *
Nvidia-graphics-drivers-384 Ubuntu trusty *
Nvidia-graphics-drivers-384 Ubuntu xenial *
Nvidia-graphics-drivers-418-server Ubuntu bionic *
Nvidia-graphics-drivers-418-server Ubuntu esm-apps/bionic *
Nvidia-graphics-drivers-418-server Ubuntu esm-apps/focal *
Nvidia-graphics-drivers-418-server Ubuntu focal *
Nvidia-graphics-drivers-418-server Ubuntu jammy *
Nvidia-graphics-drivers-430 Ubuntu bionic *
Nvidia-graphics-drivers-430 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-430 Ubuntu focal *
Nvidia-graphics-drivers-430 Ubuntu jammy *
Nvidia-graphics-drivers-430 Ubuntu kinetic *
Nvidia-graphics-drivers-430 Ubuntu lunar *
Nvidia-graphics-drivers-430 Ubuntu mantic *
Nvidia-graphics-drivers-435 Ubuntu bionic *
Nvidia-graphics-drivers-435 Ubuntu esm-apps/jammy *
Nvidia-graphics-drivers-435 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-435 Ubuntu focal *
Nvidia-graphics-drivers-435 Ubuntu jammy *
Nvidia-graphics-drivers-435 Ubuntu kinetic *
Nvidia-graphics-drivers-435 Ubuntu lunar *
Nvidia-graphics-drivers-435 Ubuntu mantic *
Nvidia-graphics-drivers-440 Ubuntu bionic *
Nvidia-graphics-drivers-440 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-440 Ubuntu focal *
Nvidia-graphics-drivers-440 Ubuntu jammy *
Nvidia-graphics-drivers-440 Ubuntu kinetic *
Nvidia-graphics-drivers-440 Ubuntu lunar *
Nvidia-graphics-drivers-440 Ubuntu mantic *
Nvidia-graphics-drivers-440-server Ubuntu bionic *
Nvidia-graphics-drivers-440-server Ubuntu esm-apps/bionic *
Nvidia-graphics-drivers-440-server Ubuntu esm-apps/focal *
Nvidia-graphics-drivers-440-server Ubuntu esm-apps/jammy *
Nvidia-graphics-drivers-440-server Ubuntu focal *
Nvidia-graphics-drivers-440-server Ubuntu jammy *
Nvidia-graphics-drivers-440-server Ubuntu kinetic *
Nvidia-graphics-drivers-440-server Ubuntu lunar *
Nvidia-graphics-drivers-450 Ubuntu bionic *
Nvidia-graphics-drivers-450 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-450 Ubuntu focal *
Nvidia-graphics-drivers-450 Ubuntu jammy *
Nvidia-graphics-drivers-450 Ubuntu kinetic *
Nvidia-graphics-drivers-450 Ubuntu lunar *
Nvidia-graphics-drivers-450 Ubuntu mantic *
Nvidia-graphics-drivers-450-server Ubuntu bionic *
Nvidia-graphics-drivers-450-server Ubuntu focal *
Nvidia-graphics-drivers-450-server Ubuntu jammy *
Nvidia-graphics-drivers-450-server Ubuntu kinetic *
Nvidia-graphics-drivers-450-server Ubuntu lunar *
Nvidia-graphics-drivers-450-server Ubuntu upstream *
Nvidia-graphics-drivers-455 Ubuntu bionic *
Nvidia-graphics-drivers-455 Ubuntu esm-apps/bionic *
Nvidia-graphics-drivers-455 Ubuntu esm-apps/focal *
Nvidia-graphics-drivers-455 Ubuntu focal *
Nvidia-graphics-drivers-455 Ubuntu jammy *
Nvidia-graphics-drivers-455 Ubuntu kinetic *
Nvidia-graphics-drivers-455 Ubuntu lunar *
Nvidia-graphics-drivers-455 Ubuntu mantic *
Nvidia-graphics-drivers-460 Ubuntu bionic *
Nvidia-graphics-drivers-460 Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-460 Ubuntu focal *
Nvidia-graphics-drivers-460 Ubuntu jammy *
Nvidia-graphics-drivers-460 Ubuntu kinetic *
Nvidia-graphics-drivers-460 Ubuntu lunar *
Nvidia-graphics-drivers-460 Ubuntu mantic *
Nvidia-graphics-drivers-460-server Ubuntu bionic *
Nvidia-graphics-drivers-460-server Ubuntu esm-infra/bionic *
Nvidia-graphics-drivers-460-server Ubuntu focal *
Nvidia-graphics-drivers-470 Ubuntu bionic *
Nvidia-graphics-drivers-470 Ubuntu focal *
Nvidia-graphics-drivers-470 Ubuntu jammy *
Nvidia-graphics-drivers-470 Ubuntu kinetic *
Nvidia-graphics-drivers-470 Ubuntu lunar *
Nvidia-graphics-drivers-470 Ubuntu mantic *
Nvidia-graphics-drivers-470 Ubuntu noble *
Nvidia-graphics-drivers-470 Ubuntu upstream *
Nvidia-graphics-drivers-470-server Ubuntu bionic *
Nvidia-graphics-drivers-470-server Ubuntu focal *
Nvidia-graphics-drivers-470-server Ubuntu jammy *
Nvidia-graphics-drivers-470-server Ubuntu kinetic *
Nvidia-graphics-drivers-470-server Ubuntu lunar *
Nvidia-graphics-drivers-470-server Ubuntu mantic *
Nvidia-graphics-drivers-470-server Ubuntu noble *
Nvidia-graphics-drivers-470-server Ubuntu upstream *
Nvidia-graphics-drivers-510 Ubuntu bionic *
Nvidia-graphics-drivers-510 Ubuntu focal *
Nvidia-graphics-drivers-510 Ubuntu jammy *
Nvidia-graphics-drivers-510 Ubuntu kinetic *
Nvidia-graphics-drivers-510 Ubuntu lunar *
Nvidia-graphics-drivers-510 Ubuntu mantic *
Nvidia-graphics-drivers-510 Ubuntu upstream *
Nvidia-graphics-drivers-510-server Ubuntu upstream *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”

  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

  • Run the code in a “jail” or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

  • OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

  • This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

  • Be careful to avoid CWE-243 and other weaknesses related to jails.

References