CVE Vulnerabilities

CVE-2022-46699

Out-of-bounds Write

Published: Dec 15, 2022 | Modified: May 30, 2023
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
8.8 MODERATE
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

A memory corruption issue was addressed with improved state management. This issue is fixed in Safari 16.2, tvOS 16.2, macOS Ventura 13.1, iOS 16.2 and iPadOS 16.2, watchOS 9.2. Processing maliciously crafted web content may lead to arbitrary code execution.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Safari Apple * 16.2 (excluding)
Ipados Apple * 16.2 (excluding)
Iphone_os Apple * 16.2 (excluding)
Macos Apple * 13.1 (excluding)
Tvos Apple * 16.2 (excluding)
Watchos Apple * 9.2 (excluding)
Red Hat Enterprise Linux 8 RedHat webkit2gtk3-0:2.38.5-1.el8 *
Red Hat Enterprise Linux 9 RedHat webkit2gtk3-0:2.38.5-1.el9 *
Qtwebkit-opensource-src Ubuntu bionic *
Qtwebkit-opensource-src Ubuntu devel *
Qtwebkit-opensource-src Ubuntu esm-apps/bionic *
Qtwebkit-opensource-src Ubuntu esm-apps/focal *
Qtwebkit-opensource-src Ubuntu esm-apps/jammy *
Qtwebkit-opensource-src Ubuntu esm-apps/noble *
Qtwebkit-opensource-src Ubuntu esm-infra/xenial *
Qtwebkit-opensource-src Ubuntu focal *
Qtwebkit-opensource-src Ubuntu jammy *
Qtwebkit-opensource-src Ubuntu kinetic *
Qtwebkit-opensource-src Ubuntu lunar *
Qtwebkit-opensource-src Ubuntu mantic *
Qtwebkit-opensource-src Ubuntu noble *
Qtwebkit-opensource-src Ubuntu trusty *
Qtwebkit-opensource-src Ubuntu upstream *
Qtwebkit-opensource-src Ubuntu xenial *
Qtwebkit-source Ubuntu bionic *
Qtwebkit-source Ubuntu esm-apps/bionic *
Qtwebkit-source Ubuntu esm-apps/xenial *
Qtwebkit-source Ubuntu trusty *
Qtwebkit-source Ubuntu xenial *
Webkit2gtk Ubuntu bionic *
Webkit2gtk Ubuntu devel *
Webkit2gtk Ubuntu esm-infra/bionic *
Webkit2gtk Ubuntu esm-infra/xenial *
Webkit2gtk Ubuntu focal *
Webkit2gtk Ubuntu jammy *
Webkit2gtk Ubuntu kinetic *
Webkit2gtk Ubuntu lunar *
Webkit2gtk Ubuntu mantic *
Webkit2gtk Ubuntu noble *
Webkit2gtk Ubuntu upstream *
Webkit2gtk Ubuntu xenial *
Webkitgtk Ubuntu bionic *
Webkitgtk Ubuntu esm-apps/bionic *
Webkitgtk Ubuntu esm-apps/xenial *
Webkitgtk Ubuntu trusty *
Webkitgtk Ubuntu xenial *
Wpewebkit Ubuntu esm-apps/focal *
Wpewebkit Ubuntu esm-apps/jammy *
Wpewebkit Ubuntu focal *
Wpewebkit Ubuntu jammy *
Wpewebkit Ubuntu trusty *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References