CVE Vulnerabilities

CVE-2022-47390

Out-of-bounds Write

Published: May 15, 2023 | Modified: Jul 17, 2025
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu
root.io logo minimus.io logo echo.ai logo

An authenticated, remote attacker may use a stack based out-of-bounds write vulnerability in the CmpTraceMgr Component of multiple CODESYS products in multiple versions to write data into the stack which can lead to a denial-of-service condition, memory overwriting, or remote code execution.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

NameVendorStart VersionEnd Version
Control_for_beaglebone_slCodesys*4.8.0.0 (excluding)
Control_for_empc-a/imx6_slCodesys*4.8.0.0 (excluding)
Control_for_iot2000_slCodesys*4.8.0.0 (excluding)
Control_for_linux_slCodesys*4.8.0.0 (excluding)
Control_for_pfc100_slCodesys*4.8.0.0 (excluding)
Control_for_pfc200_slCodesys*4.8.0.0 (excluding)
Control_for_plcnext_slCodesys*4.8.0.0 (excluding)
Control_for_raspberry_pi_slCodesys*4.8.0.0 (excluding)
Control_for_wago_touch_panels_600_slCodesys*4.8.0.0 (excluding)
Control_rte_(for_beckhoff_cx)_slCodesys*3.5.19.0 (excluding)
Control_rte_(sl)Codesys*3.5.19.0 (excluding)
Control_runtime_system_toolkitCodesys*3.5.19.0 (excluding)
Control_win_(sl)Codesys*3.5.19.0 (excluding)
Development_system_v3Codesys*3.5.19.0 (excluding)
Hmi_(sl)Codesys*3.5.19.0 (excluding)
Safety_sil2_pspCodesys*3.5.19.0 (excluding)
Safety_sil2_runtime_toolkitCodesys*3.5.19.0 (excluding)

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References