CVE Vulnerabilities

CVE-2023-23586

Use After Free

Published: Feb 17, 2023 | Modified: Nov 07, 2023
CVSS 3.x
5.5
MEDIUM
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

Due to a vulnerability in the io_uring subsystem, it is possible to leak kernel memory information to the user process. timens_install calls current_is_single_threaded to determine if the current process is single-threaded, but this call does not consider io_urings io_worker threads, thus it is possible to insert a time namespaces vvar page to processs memory space via a page fault. When this time namespace is destroyed, the vvar page is also freed, but not removed from the process memory, and a next page allocated by the kernel will be still available from the user-space process and can leak memory contents via this (read-only) use-after-free vulnerability. We recommend upgrading past version 5.10.161 or commit  788d0824269bef539fe31a785b1517882eafed93 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/io_uring

Weakness

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux 5.6 *

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system’s reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:

In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process. If the newly allocated data happens to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Potential Mitigations

References