CVE Vulnerabilities

CVE-2023-32735

Deserialization of Untrusted Data

Published: Jul 09, 2024 | Modified: Jul 09, 2024
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

A vulnerability has been identified in SIMATIC STEP 7 Safety V16 (All versions < V16 Update 7), SIMATIC STEP 7 Safety V17 (All versions < V17 Update 7), SIMATIC STEP 7 Safety V18 (All versions < V18 Update 2), SIMATIC STEP 7 V16 (All versions < V16 Update 7), SIMATIC STEP 7 V17 (All versions < V17 Update 7), SIMATIC STEP 7 V18 (All versions < V18 Update 2), SIMATIC WinCC Unified V16 (All versions < V16 Update 7), SIMATIC WinCC Unified V17 (All versions < V17 Update 7), SIMATIC WinCC Unified V18 (All versions < V18 Update 2), SIMATIC WinCC V16 (All versions < V16.7), SIMATIC WinCC V17 (All versions < V17.7), SIMATIC WinCC V18 (All versions < V18 Update 2), SIMOCODE ES V16 (All versions < V16 Update 7), SIMOCODE ES V17 (All versions < V17 Update 7), SIMOCODE ES V18 (All versions < V18 Update 2), SIMOTION SCOUT TIA V5.4 SP1 (All versions), SIMOTION SCOUT TIA V5.4 SP3 (All versions), SIMOTION SCOUT TIA V5.5 SP1 (All versions), SINAMICS Startdrive V16 (All versions), SINAMICS Startdrive V17 (All versions), SINAMICS Startdrive V18 (All versions), SIRIUS Safety ES V17 (All versions < V17 Update 7), SIRIUS Safety ES V18 (All versions < V18 Update 2), SIRIUS Soft Starter ES V17 (All versions < V17 Update 7), SIRIUS Soft Starter ES V18 (All versions < V18 Update 2), Soft Starter ES V16 (All versions < V16 Update 7), TIA Portal Cloud V3.0 (All versions < V18 Update 2). Affected applications do not properly restrict the .NET BinaryFormatter when deserializing hardware configuration profiles. This could allow an attacker to cause a type confusion and execute arbitrary code within the affected application.

This is the same issue that exists for .NET BinaryFormatter https://docs.microsoft.com/en-us/visualstudio/code-quality/ca2300.

Weakness

The product deserializes untrusted data without sufficiently verifying that the resulting data will be valid.

Extended Description

It is often convenient to serialize objects for communication or to save them for later use. However, deserialized data or code can often be modified without using the provided accessor functions if it does not use cryptography to protect itself. Furthermore, any cryptography would still be client-side security – which is a dangerous security assumption. Data that is untrusted can not be trusted to be well-formed. When developers place no restrictions on “gadget chains,” or series of instances and method invocations that can self-execute during the deserialization process (i.e., before the object is returned to the caller), it is sometimes possible for attackers to leverage them to perform unauthorized actions, like generating a shell.

Potential Mitigations

  • Make fields transient to protect them from deserialization.
  • An attempt to serialize and then deserialize a class containing transient fields will result in NULLs where the transient data should be. This is an excellent way to prevent time, environment-based, or sensitive variables from being carried over and used improperly.

References