CVE Vulnerabilities

CVE-2023-42116

Stack-based Buffer Overflow

Published: May 03, 2024 | Modified: Sep 18, 2024
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
8.1 IMPORTANT
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

Exim SMTP Challenge Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Exim. Authentication is not required to exploit this vulnerability.

The specific flaw exists within the handling of NTLM challenge requests. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the service account. . Was ZDI-CAN-17515.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Exim4 Ubuntu bionic *
Exim4 Ubuntu devel *
Exim4 Ubuntu esm-infra/bionic *
Exim4 Ubuntu esm-infra/xenial *
Exim4 Ubuntu focal *
Exim4 Ubuntu jammy *
Exim4 Ubuntu lunar *
Exim4 Ubuntu mantic *
Exim4 Ubuntu trusty *
Exim4 Ubuntu trusty/esm *
Exim4 Ubuntu upstream *
Exim4 Ubuntu xenial *

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References