CVE Vulnerabilities

CVE-2023-47038

Heap-based Buffer Overflow

Published: Dec 18, 2023 | Modified: Nov 21, 2024
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
7 MODERATE
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

A vulnerability was found in perl 5.30.0 through 5.38.0. This issue occurs when a crafted regular expression is compiled by perl, which can allow an attacker controlled byte buffer overflow in a heap allocated buffer.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

Name Vendor Start Version End Version
Perl Perl 5.34.0 (including) 5.34.0 (including)
Red Hat Enterprise Linux 8 RedHat perl:5.32-8100020240314121426.9fe1d287 *
Red Hat Enterprise Linux 9 RedHat perl-4:5.32.1-481.el9 *
Perl Ubuntu bionic *
Perl Ubuntu devel *
Perl Ubuntu focal *
Perl Ubuntu jammy *
Perl Ubuntu lunar *
Perl Ubuntu mantic *
Perl Ubuntu noble *
Perl Ubuntu oracular *
Perl Ubuntu trusty *
Perl Ubuntu xenial *
Perl6 Ubuntu bionic *
Perl6 Ubuntu trusty *
Perl6 Ubuntu xenial *
Raku Ubuntu bionic *
Raku Ubuntu lunar *
Raku Ubuntu mantic *
Raku Ubuntu trusty *
Raku Ubuntu xenial *

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References