CVE Vulnerabilities

CVE-2023-7104

Heap-based Buffer Overflow

Published: Dec 29, 2023 | Modified: Nov 03, 2025
CVSS 3.x
7.3
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L
CVSS 2.x
RedHat/V2
RedHat/V3
7.3 MODERATE
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L
Ubuntu
MEDIUM
root.io logo minimus.io logo echo.ai logo

A vulnerability was found in SQLite SQLite3 up to 3.43.0 and classified as critical. This issue affects the function sessionReadRecord of the file ext/session/sqlite3session.c of the component make alltest Handler. The manipulation leads to heap-based buffer overflow. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-248999.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

NameVendorStart VersionEnd Version
SqliteSqlite*3.43.0 (including)
Red Hat Enterprise Linux 8RedHatsqlite-0:3.26.0-19.el8_9*
Red Hat Enterprise Linux 8RedHatsqlite-0:3.26.0-19.el8_9*
Red Hat Enterprise Linux 8.6 Extended Update SupportRedHatsqlite-0:3.26.0-16.el8_6.2*
Red Hat Enterprise Linux 8.8 Extended Update SupportRedHatsqlite-0:3.26.0-18.el8_8.1*
Red Hat Enterprise Linux 9RedHatsqlite-0:3.34.1-7.el9_3*
Red Hat Enterprise Linux 9RedHatsqlite-0:3.34.1-7.el9_3*
Red Hat Enterprise Linux 9.2 Extended Update SupportRedHatsqlite-0:3.34.1-6.el9_2.1*
Red Hat OpenShift Container Platform 4.13RedHatopenshift4-wincw/windows-machine-config-operator-bundle:v8.1.2-13*
Red Hat OpenShift Container Platform 4.13RedHatopenshift4-wincw/windows-machine-config-rhel9-operator:8.1.2-13*
RHODF-4.15-RHEL-9RedHatodf4/cephcsi-rhel9:v4.15.0-37*
RHODF-4.15-RHEL-9RedHatodf4/mcg-core-rhel9:v4.15.0-68*
RHODF-4.15-RHEL-9RedHatodf4/mcg-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/mcg-rhel9-operator:v4.15.0-39*
RHODF-4.15-RHEL-9RedHatodf4/ocs-client-console-rhel9:v4.15.0-58*
RHODF-4.15-RHEL-9RedHatodf4/ocs-client-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/ocs-client-rhel9-operator:v4.15.0-13*
RHODF-4.15-RHEL-9RedHatodf4/ocs-metrics-exporter-rhel9:v4.15.0-81*
RHODF-4.15-RHEL-9RedHatodf4/ocs-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/ocs-rhel9-operator:v4.15.0-79*
RHODF-4.15-RHEL-9RedHatodf4/odf-cli-rhel9:v4.15.0-22*
RHODF-4.15-RHEL-9RedHatodf4/odf-console-rhel9:v4.15.0-57*
RHODF-4.15-RHEL-9RedHatodf4/odf-cosi-sidecar-rhel9:v4.15.0-6*
RHODF-4.15-RHEL-9RedHatodf4/odf-csi-addons-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/odf-csi-addons-rhel9-operator:v4.15.0-15*
RHODF-4.15-RHEL-9RedHatodf4/odf-csi-addons-sidecar-rhel9:v4.15.0-15*
RHODF-4.15-RHEL-9RedHatodf4/odf-multicluster-console-rhel9:v4.15.0-54*
RHODF-4.15-RHEL-9RedHatodf4/odf-multicluster-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/odf-multicluster-rhel9-operator:v4.15.0-10*
RHODF-4.15-RHEL-9RedHatodf4/odf-must-gather-rhel9:v4.15.0-26*
RHODF-4.15-RHEL-9RedHatodf4/odf-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/odf-rhel9-operator:v4.15.0-19*
RHODF-4.15-RHEL-9RedHatodf4/odr-cluster-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/odr-hub-operator-bundle:v4.15.0-158*
RHODF-4.15-RHEL-9RedHatodf4/odr-rhel9-operator:v4.15.0-21*
RHODF-4.15-RHEL-9RedHatodf4/rook-ceph-rhel9-operator:v4.15.0-103*
SqliteUbuntubionic*
SqliteUbuntutrusty*
SqliteUbuntuupstream*
SqliteUbuntuxenial*
Sqlite3Ubuntubionic*
Sqlite3Ubuntuesm-infra/bionic*
Sqlite3Ubuntuesm-infra/focal*
Sqlite3Ubuntufocal*
Sqlite3Ubuntujammy*
Sqlite3Ubuntulunar*
Sqlite3Ubuntumantic*
Sqlite3Ubuntutrusty*
Sqlite3Ubuntuupstream*
Sqlite3Ubuntuxenial*

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References